Degenerate principal series representations of Sp(2n,𝐑)
Compositio Mathematica, Tome 103 (1996) no. 2, pp. 123-151.
@article{CM_1996__103_2_123_0,
     author = {Lee, Soo Teck},
     title = {Degenerate principal series representations of $Sp(2n, \mathbf {R})$},
     journal = {Compositio Mathematica},
     pages = {123--151},
     publisher = {Kluwer Academic Publishers},
     volume = {103},
     number = {2},
     year = {1996},
     mrnumber = {1411569},
     zbl = {0857.22010},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1996__103_2_123_0/}
}
TY  - JOUR
AU  - Lee, Soo Teck
TI  - Degenerate principal series representations of $Sp(2n, \mathbf {R})$
JO  - Compositio Mathematica
PY  - 1996
SP  - 123
EP  - 151
VL  - 103
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1996__103_2_123_0/
LA  - en
ID  - CM_1996__103_2_123_0
ER  - 
%0 Journal Article
%A Lee, Soo Teck
%T Degenerate principal series representations of $Sp(2n, \mathbf {R})$
%J Compositio Mathematica
%D 1996
%P 123-151
%V 103
%N 2
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1996__103_2_123_0/
%G en
%F CM_1996__103_2_123_0
Lee, Soo Teck. Degenerate principal series representations of $Sp(2n, \mathbf {R})$. Compositio Mathematica, Tome 103 (1996) no. 2, pp. 123-151. http://archive.numdam.org/item/CM_1996__103_2_123_0/

1 Alperin, J.: Diagrams for modules, J. Pure Appl. Algebra 16 (1980) 111-119. | MR | Zbl

2 Bargmann, V.: Irreducible unitary representations of the Lorentz group, Ann. of Math. 48 (1947) 568-640. | MR | Zbl

3 Bernstein, I.N., Gelfand, I.M. and Gelfand, S.I.: Model of representations of Lie groups, Sel. Math. Sov. 1 (1981) 121-142. | Zbl

4 Carter, R.: Raising and lowering operators for Sln, with applications to orthogonal bases of Slnmodules, in The Arcata Conference on Representations of Finite Groups, Proc. Sympos. Pure Math. 47, Part 2, 351-366, Amer. Math. Soc., Providence, 1987. | MR | Zbl

5 Carter, R. and Lusztig, G.: On the modular representations of the general linear and symmetric groups, Math. Z. 136 (1974) 193-242. | MR | Zbl

6 Goodearl, K. and Warfield, R.: An Introduction to Noncommutative Rings, London Mathematical Society student Texts 16, Cambridge University Press, Cambridge, 1989. | MR | Zbl

7 Howe, R. and Lee, S.: Degenerate principal series representations of GL(n, C) and GL(n, R), in preparation.

8 Howe, R. and Tan, E.: Homogeneous functions on light cones: the infinitesimal structure of some degenerate principal series representations, Bull. Amer. Math. Soc. 28 (1993) 1-74. | MR | Zbl

9 Johnson, K.: Degenerate principal series on tube type domains, Contemp. Math. 138 (1992) 175-187. | MR | Zbl

10 Kudla, S. and Rallis, S.: Degenerate principal series and invariant distributions, Israel J. Math. 69 (1990) 25-45. | MR | Zbl

11 Lee, S.: On some degenerate principal series representations of U(n, n), J. of Funct. Anal. 126 (1994) 305-366. | MR | Zbl

12 Sahi, S.: Unitary representations on the Shilov boundary of a symmetric tube domain, in Representations of Groups and Algebras, Contemp. Math. 145 (1993) 275-286, Amer. Math. Soc., Providence. | MR | Zbl

13 Sahi, S.: Jordan algebras and degenerate principal series, preprint. | MR | Zbl

14 Varadarajan, V.: An Introduction to Harmonic Analysis on Semisimple Lie Groups, Cambridge Studies in Advanced Mathematics, Vol 16, Cambridge Univ. Press, Cambridge, 1989. | MR | Zbl

15 Wallach, N.R.: Real Reductive Groups I, Academic Press, 1988. | MR | Zbl

16 Zhang, G.: Jordan algebras and generalized principal series representation, preprint. | MR | Zbl