p-adic dynamical systems and formal groups
Compositio Mathematica, Tome 104 (1996) no. 1, pp. 41-54.
@article{CM_1996__104_1_41_0,
     author = {Li, Hua-Chieh},
     title = {$p$-adic dynamical systems and formal groups},
     journal = {Compositio Mathematica},
     pages = {41--54},
     publisher = {Kluwer Academic Publishers},
     volume = {104},
     number = {1},
     year = {1996},
     mrnumber = {1420709},
     zbl = {0873.58060},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1996__104_1_41_0/}
}
TY  - JOUR
AU  - Li, Hua-Chieh
TI  - $p$-adic dynamical systems and formal groups
JO  - Compositio Mathematica
PY  - 1996
SP  - 41
EP  - 54
VL  - 104
IS  - 1
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1996__104_1_41_0/
LA  - en
ID  - CM_1996__104_1_41_0
ER  - 
%0 Journal Article
%A Li, Hua-Chieh
%T $p$-adic dynamical systems and formal groups
%J Compositio Mathematica
%D 1996
%P 41-54
%V 104
%N 1
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1996__104_1_41_0/
%G en
%F CM_1996__104_1_41_0
Li, Hua-Chieh. $p$-adic dynamical systems and formal groups. Compositio Mathematica, Tome 104 (1996) no. 1, pp. 41-54. http://archive.numdam.org/item/CM_1996__104_1_41_0/

1 Koblitz, N.: p-adic Numbers, p-adic Analysis, and Zeta-Functions, Springer-Verlag, New York, 1977. | MR | Zbl

2 Li, H.-C.: p-adic Periodic Points and Sen's Theorem, J. Number Theory 56, 2 (1996), 309-318. | MR | Zbl

3 Li, H.-C.: Counting Periodic Points of p-adic Power Series, Comp. Math. 100 (1996), 351-364. | Numdam | MR | Zbl

4 Li, H.-C.: p-adic Power Series which Commute under Composition, Trans. of A.M.S., to appear. | MR | Zbl

5 Li, H.-C.: p-adic Dynamical Systems, Ph. D. Thesis, Brown University, 1994.

6 Lubin, J.: Nonarchimedean Dynamical System, Comp. Math. 94 (1994), 321-346. | Numdam | MR | Zbl

7 Lubin, J. and Tate, J.: Formal Complex Multiplication in Local Field, Ann. Math. 81 (1965), 380-387. | MR | Zbl

8 Lubin, J.: One-parameter Formal Lie Groups over p-adic Integer Rings, Ann. Math. 80 (1964), 464-484. | MR | Zbl