Compositio Mathematica

Claire Voisin
 A mathematical proof of a formula of Aspinwall and Morrison

Compositio Mathematica, tome 104, ${ }^{\circ} 2$ (1996), p. 135-151
http://www.numdam.org/item?id=CM_1996__104_2_135_0
© Foundation Compositio Mathematica, 1996, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

A mathematical proof of a formula of Aspinwall and Morrison

CLAIRE VOISIN*
Department of Mathematics, Université d'Orsay, CNRS, URA 1169, France

(Received 4 July 1995; accepted in final form 4 October 1995)

Abstract

We give a rigorous proof of Aspinwall-Morrison formula, which expresses the cubic derivatives of the Gromov-Witten as a series depending only on the number of rational curves in each homology class, for a Calabi-Yau threefold with only rigid immersed rational curves.

Key words: Calabi-Yau varieties, rational curves, Gromov-Witten potential

1. Introduction

Let X be a Calabi-Yau variety of dimension three, and let $\phi: \mathbb{P}^{1} \rightarrow X$ be a holomorphic immersion: the normal bundle $N_{\phi}=\phi^{*} T_{X} / \phi_{*} T_{\mathbb{P}}$ splits into the direct sum of two line bundles, $N_{\phi}=\mathcal{O}_{\mathbb{P}^{1}}(a) \oplus \mathcal{O}_{\mathbb{P}^{1}}(b)$, and by the adjunction formula $a+b=-2$. We will assume that $\phi\left(\mathbb{P}^{1}\right)$ is infinitesimally rigid, that is N_{ϕ} has no holomorphic section, or equivalently $a=b=-1$. In this case, for any holomorphic map $\psi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ of degree k, the deformations of the map $\phi \circ \psi$ consist of maps $\phi \circ \psi^{\prime}$, where $\psi^{\prime}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ is a deformation of ψ. It follows by compactness of the Chow variety of curves in X of bounded degree, or by [4], that for any $\alpha \in H_{2}(X, \mathbb{Z})$, there is a neighbourhood V of \mathbb{P}^{1} in X such that the only rational curves of class α such that $d^{0} \alpha \leqslant k d^{0} A$ are supported on $\phi\left(\mathbb{P}^{1}\right)$, where the degree is counted with respect to any ample line bundle on X, and $A=\phi_{*}\left(\left[\mathbb{P}^{1}\right]\right)$.

Now consider a small general perturbation J_{ϵ} of the pseudocomplex structure J of X and let ν be small general \mathcal{C}^{∞} section of the bundle $p r_{1}^{*} \Omega^{0,1}\left(\mathbb{P}^{1}\right) \otimes p r_{2}^{*}\left(T_{X_{\epsilon}}^{1,0}\right)$ on $\mathbb{P}^{1} \times X$, where $\Omega^{0,1}$ denotes complex (0,1)-forms, and $T_{X_{\epsilon}}^{1,0}$ denotes vector fields of type $(1,0)$ for the pseudocomplex structure J_{ϵ}. Then it is known (cf. [4], [9], [12]) that the space $W_{k A, J_{\epsilon}, \nu}$ of solutions to the equation

$$
\begin{equation*}
\bar{\partial}_{\epsilon} \psi=(\operatorname{Id}, \psi)^{*} \nu \tag{1.1}
\end{equation*}
$$

for $\psi: \mathbb{P}^{1} \rightarrow X$ such that $\psi_{*}\left(\left[\mathbb{P}^{1}\right]\right)=k A$, is smooth, naturally oriented of dimension six and can be compactified with a boundary of dimension $\leqslant 4$. By compactness, for $\left(J_{\epsilon}, \nu\right)$ close enough to $(J, 0)$, and for V as above the subspace $W_{k A, J_{\epsilon}, \nu}^{V}$ of

[^0]$W_{k A, J_{\epsilon}, \nu}$ consisting of maps ψ whose image is contained in V is a component (non necessarily connected) of $W_{k A, J_{\epsilon}, \nu}$.

Let x_{1}, x_{2}, x_{3} be three distinct points of \mathbb{P}^{1}, and consider the evaluation map

$$
\begin{align*}
& e v: W_{k A, J_{\epsilon}, \nu}^{V} \rightarrow X^{3} \\
& \psi \mapsto\left(\psi\left(x_{1}\right),\left(\psi\left(x_{2}\right),\left(\psi\left(x_{3}\right)\right) .\right.\right. \tag{1.2}
\end{align*}
$$

Again the image of $e v$ is six dimensional oriented, and can be compactified with a boundary of dimension $\leqslant 4$, so has a homology class in $H_{6}\left(X^{3}\right)$ (which in fact is in the image of $H_{6}\left(V^{3}\right) \rightarrow H_{6}\left(X^{3}\right)$, which is generated by $\left.A \times A \times A\right)$. This paper gives a proof of the following
THEOREM 1.1 This class is equal to $A \times A \times A \in H_{6}\left(X^{3}\right)$.
In [10], Manin already proved this statement, admitting the possibility to apply Bott formula to stacks (which may be only a formal point to verify) and using some ideas due to Kontsevich ([5]). It may be nevertheless interesting to have a proof close to Aspinwall and Morrison argument ([1]), and justifying a posteriori their computation.

This theorem is, as in the paper by Aspinwall and Morrison [1], a consequence of a more precise statement, namely that as a space of curves in $\mathbb{P}^{1} \times X$, the component $W_{k A, J_{\epsilon}, \nu}^{V}$ is homologous to any cycle in $M_{k}:=\mathbb{P}\left(H^{0}\left(\mathcal{O}_{\mathbb{P} 1 \times \mathbb{P}^{1}}(k, 1)\right)\right)$, Poincaré dual to the top Chern class of the bundle with fiber at $\psi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$, the space $H^{1}\left((\phi \circ \psi)^{*} T_{X}\right)$. Here we view M_{k} as a compactification of the space M_{k}^{0} parametrizing degree k coverings $\psi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$, and we identify it to a set of curves in $\mathbb{P}^{1} \times X$, via ϕ. This statement is quite natural, since this vector bundle, at least on M_{k}^{0}, is exactly the excess bundle for the too large family of holomorphic curves M_{k}. However, the proof shows that one has to be careful with the singular curves in $\mathbb{P}^{1} \times X$ parametrized by $M_{k}-M_{k}^{0}$, and especially with non reduced curves: for a special choice of ν (and for $J_{\epsilon}=J$) we will exhibit a section s of this bundle on $M_{k}^{0} \subset M_{k}$ such that $W_{k A, J, \nu}^{V}$ identifies naturally to the zero set of s. However, this section is not even continuous at non reduced curves in M_{k}. The result is that, nevertheless, the closure of the zero locus of s in M_{k} has for homology class the Poincaré dual of the top Chern class of this bundle.

We mention at this point an essential difference between Manin's computation [10] and ours: Manin works with the moduli space of stable maps to get a complicated, but more satisfactory from the point of view of moduli spaces, compactification of the space of smooth ramified covers of \mathbb{P}^{1}. As in [1], we work with the naive compactification $M_{k} \cong \mathbb{P}^{2 k+1}$, on which the Chern classes computations are quite easy, but which is not a good moduli space at the boundary.

The Theorem 1.1 is one version of Aspinwall-Morrison formula [1], which we now explain: let $\omega \in H^{2}(X, \mathbb{Z})$ such that $\operatorname{Re} \omega \cong \alpha$ is a sufficiently large kähler
class on X. The Gromov-Witten potential is the function on $H^{\text {even }}(X)$ defined by the series (expected to be convergent for large α)

$$
\begin{equation*}
\Psi_{\omega}(\eta)=\sum_{\substack{A \in H_{2}(X, Z) \\ k \geqslant 3}} \frac{1}{k!} \mathrm{e}^{-\int_{A} \omega^{2} \Phi_{A}(\eta, \eta, \eta \mid \underbrace{\eta \ldots \eta}_{k-3})} \tag{1.3}
\end{equation*}
$$

([7], [13]) where the mixed Gromov-Witten invariants $\Phi_{A}(\eta, \eta, \eta \mid \underbrace{\eta \ldots \eta}_{k-3}$) ([12]) are defined as follows: for (J, ν) generic, J a pseudocomplex structure, ν a section of $p r_{1}^{*} \Omega^{0,1}\left(\mathbb{P}^{1}\right) \otimes p r_{2}^{*}\left(T_{X_{J}}^{1,0}\right)$ on $\mathbb{P}^{1} \times X$ and $A \in H_{2}(X, \mathbb{Z})$, consider the evaluation map

$$
\begin{align*}
& e v_{k-3}: W_{A, J, \nu} \times \mathbb{P}^{k-3} \rightarrow X^{k} \\
& \left(\psi, z_{1}, \ldots, z_{k-3}\right) \mapsto\left(\psi\left(x_{1}\right), \psi\left(x_{2}\right), \psi\left(x_{3}\right), \psi\left(z_{1}\right), \ldots, \psi\left(z_{k-3}\right)\right), \tag{1.4}
\end{align*}
$$

the points x_{i} being fixed on \mathbb{P}^{1}. Then $\operatorname{Im} e v_{k-3}$ is as before oriented, smooth of real dimension $6+2(k-3)$, and can be compactified with a boundary of codimension two, so defines a homology class in X^{k} on which one can integrate $\eta^{\otimes k}$, which gives the invariant. For $A=0, k>3$, one has $\Phi_{A}(\eta, \eta, \eta \mid \underbrace{\eta \ldots \eta}_{k-3})=0$, essentially because the map $e v_{k-3}$ has positive dimensional fibers, at least when $\nu=0$, and for $A=0, k=3$ one has $\Phi_{A}(\eta, \eta, \eta)=\int_{X} \eta^{3}$ because $W_{A, J, 0}$ identifies to the constant maps, and $e v\left(W_{A, J, 0}\right)$ is then simply the diagonal in X^{3}.

Now assume that all generically immersed rational curves in X are immersed and infinitesimally rigid, and let $n(A)$ be the number of immersed rational curves of class $A \neq 0$. Then all rational curves on X are multiple covers of immersed infinitesimally rigid curves, and we can apply the Theorem 1.1 , which says that for $l \geq 1, A \neq 0, W_{l A, J, \nu}$ is made of $n(A)$ components whose contribution to $\Phi_{l A}(\eta, \eta, \eta \mid \underbrace{\eta \ldots \eta}_{k-3})$ is equal to

$$
\begin{equation*}
l^{k-3}\left(\int_{A} \eta\right)^{k-3} \int_{A \times A \times A} \eta^{\otimes 3} \tag{1.5}
\end{equation*}
$$

It follows that

$$
\begin{align*}
\Psi_{\omega}(\eta) & =\frac{1}{6} \int_{X} \eta^{3}+\sum_{\substack{A \in H_{2}(X, Z)-\\
k \geqslant 3, l \geqslant 1}} n(A) \frac{1}{k!} \mathrm{e}^{-\int_{l A} \omega l^{k-3}}\left(\int_{A} \eta\right)^{k} \\
& =\frac{1}{6} \int_{X} \eta^{3}+\sum_{\substack{A \in H_{2}(X, X, Z)-\{0\} \\
l \geqslant 1}} \frac{1}{l} n(A) \mathrm{e}^{k} \int_{l A}-\omega+\eta \tag{1.6}
\end{align*}
$$

modulo a quadratic term in η. So if we consider the cubic derivatives $\partial^{3} \Psi_{\omega} / \partial t_{i}$ $\partial t_{j} \partial t_{k}(\eta)$ w.r.t. linear coordinates on $H^{\text {even }}(X)$ corresponding to a basis η_{i} of $H^{\text {even }}(X)$, we find

$$
\begin{align*}
\partial^{3} & \Psi_{\omega} / \partial t_{i} \partial t_{j} \partial t_{k}(\eta) \\
= & \int_{X} \eta_{i} \wedge \eta_{j} \wedge \eta_{k}+\sum_{\substack{A \in H_{2}(X, \mathbb{Z})-\{0\} \\
l \geqslant 1}} \frac{n(A)}{l^{3}} \mathrm{e}^{\int_{l A}-\omega+\eta} \int_{l A} \eta_{i} \int_{l A} \eta_{j} \int_{l A} \eta_{k} \\
= & \int_{X} \eta_{i} \wedge \eta_{j} \wedge \eta_{k}+\sum_{\substack{A \in H_{2}(X, Z \mathbb{Z})-\{0\} \\
l \geqslant 1}} n(A) \mathrm{e}_{l A}^{\int_{l A}-\omega+\eta} \int_{A} \eta_{i} \int_{A} \eta_{j} \int_{A} \eta_{k} \\
= & \int_{X} \eta_{i} \wedge \eta_{j} \wedge \eta_{k}+\sum_{A \neq 0} n(A) \mathrm{e}^{\int_{A}-\omega+\eta} /\left(1-\mathrm{e}^{\int_{A}-\omega+\eta}\right) \\
& \int_{A} \eta_{i} \int_{A} \eta_{j} \int_{A} \eta_{k} \tag{1.7}
\end{align*}
$$

which is Aspinwall-Morrison formula for the Yukawa couplings of the 'A-model' of X, at the point $\omega-\eta$ (see [1], [15], [3],[12]).

2. Choice of the Parameter ν

We will assume in this section that $\phi: \mathbb{P}^{1} \rightarrow X$ is an embedding, and consider the general case in Section 4. We will use the following result ([8])
THEOREM 2.1. Let $\phi: \mathbb{P}^{1} \hookrightarrow X$ such that $N_{\phi} \cong \mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$; then a neighbourhood V of \mathbb{P}^{1} in X is holomorphically isomorphic to a neighbourhood of the zero section of the total space W of the bundle $\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$ on \mathbb{P}^{1}.
Since the Theorem 1.1 is a local statement, we may assume from now on that $X=W$. Now let $\pi: W \rightarrow \mathbb{P}^{1}$ be the natural projection, with fiber $\pi^{-1}(x)=N_{\phi(x)}$; we get an inclusion

$$
\begin{equation*}
\pi^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)\right) \subset T_{W} \tag{2.8}
\end{equation*}
$$

as the vertical tangent space of $\pi\left(T_{W}\right.$ is the bundle of $(1,0)$-vector fields on W). We choose now two \mathcal{C}^{∞} sections σ_{1}, σ_{2} of $\left.p r_{1}^{*} \Omega^{0,1}\left(\mathbb{P}^{1}\right) \otimes p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)\right)$ on $\mathbb{P}^{1} \times \mathbb{P}^{1}$, and we define $\nu=\left(\nu_{1}, \nu_{2}\right)$ where $\nu_{i}=(\operatorname{Id} \times \pi)^{*} \sigma_{i}$. ν is then a \mathcal{C}^{∞} section of $p r_{1}^{*} \Omega^{0,1}\left(\mathbb{P}^{1}\right) \otimes p r_{2}^{*} T_{W}$ via the inclusion (2.8).

We study now the solutions to the equation

$$
\begin{equation*}
\bar{\partial} \psi=(\operatorname{Id} \times \psi)^{*} \nu \tag{2.9}
\end{equation*}
$$

for $\psi: \mathbb{P}^{1} \rightarrow W$ a \mathcal{C}^{∞} map such that $\psi_{*}\left(\left[\mathbb{P}^{1}\right]\right)=k A$, where A is the homology class of the zero section. Since by construction $\pi_{*}(\nu)$ vanishes as a section of
$p r_{1}^{*} \Omega^{0,1}\left(\mathbb{P}^{1}\right) \otimes p r_{2}^{*} \circ \pi^{*} T_{\mathbb{P}^{1}}$ on $\mathbb{P}^{1} \times W$, we get $\bar{\partial}(\pi \circ \psi)=0$, so $\pi \circ \psi$ is holomorphic, of degree k. Let $\psi^{\prime}=\pi \circ \psi$; then ψ is described by a couple (ψ_{1}, ψ_{2}), where ψ_{i} are \mathcal{C}^{∞} sections of the bundle $\psi^{\prime *} \mathcal{O}_{\mathbb{P}^{1}}(-1)$. The equation (2.9) rewrites then simply as

$$
\begin{equation*}
\bar{\partial} \psi_{i}=\left(\operatorname{Id} \times \psi^{\prime}\right)^{*} \sigma_{i}, i=1,2 \tag{2.10}
\end{equation*}
$$

Since $H^{0}\left(\psi^{\prime *} \mathcal{O}_{\mathbb{P}^{1}}(-1)\right)=\{0\}, \psi_{i}$ are determined by ψ^{\prime} and exist if and only if (Id $\left.\times \psi^{\prime}\right)^{*} \sigma_{i}$, which are $(0,1)$-forms with values in $\psi^{\prime *} \mathcal{O}_{\mathbb{P}^{1}}(-1)$, vanish in $H^{1}\left(\psi^{\prime *} \mathcal{O}_{\mathbb{P}^{1}}(-1)\right)$.

As in [1], let us introduce $M_{k}=\mathbb{P}\left(H^{0}\left(\mathcal{O}_{Q}(k, 1)\right)\right)$, where $Q=\mathbb{P}^{1} \times \mathbb{P}^{1}$, $\mathcal{O}_{Q}(k, 1)=p r_{1}^{*} \mathcal{O}_{\mathbb{P}^{1}}(k) \otimes p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(1) . M_{k}$ is a compactification of the family of holomorphic maps of degree k from \mathbb{P}^{1} to \mathbb{P}^{1} : indeed the general member of M_{k} is a smooth curve in Q, isomorphic to \mathbb{P}^{1} by the first projection, and of degree k over \mathbb{P}^{1} by the second projection.

In $M_{k} \times Q$ we consider as in [1] the universal divisor D defined as the zero set of the natural section of $p_{M}^{*} \mathcal{O}_{M_{k}}(1) \otimes p_{Q}^{*} \mathcal{O}_{Q}(k, 1)$ corresponding to the identification $H^{0}\left(\mathcal{O}_{M_{k}}(1)\right)^{*} \cong H^{0}\left(\mathcal{O}_{Q}(k, 1)\right)$, where p_{M} and p_{Q} are the projections to M_{k} and Q respectively. Let $p r_{2}: Q \rightarrow \mathbb{P}^{1}$ be the second projection, and let $E:=$ $R^{1} p_{M_{*}}\left(p r_{2} \circ p_{Q}\right)^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)\right)_{\mid D}$; then since $R^{1} p_{M_{*}}\left(p r_{2} \circ p_{Q}\right)^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)\right)=\{0\}$ and $R^{2} p_{M_{*}}\left(p r_{2} \circ p_{Q}\right)^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)\right)=\{0\}$ we conclude by the long exact sequence associated to

$$
\begin{align*}
0 \rightarrow\left(p r_{2} \circ p_{Q}\right)^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)\right) \otimes \mathcal{I}_{D} & \rightarrow\left(p r_{2} \circ p_{Q}\right)^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)\right) \\
& \rightarrow\left(p r_{2} \circ p_{Q}\right)^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)\right)_{\mid D} \rightarrow 0 \tag{2.11}
\end{align*}
$$

that $E \cong R^{2} p_{M_{*}}\left(\left(p_{2} \circ p_{Q}\right)^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)\right) \otimes \mathcal{I}_{D}\right)$. Since $\mathcal{I}_{D} \cong p_{M}^{*} \mathcal{O}_{M_{k}}(-1) \otimes$ $p_{Q}^{*} \mathcal{O}_{Q}(-k,-1)$, we get
LEMMA 2.2. ([1]) $E \cong \mathcal{O}_{M_{k}}(-1) \otimes H^{2}\left(Q, \mathcal{O}_{Q}(-k,-2)\right)$. In particular E is a vector bundle on M_{k} of rank $k-1$.

Let M_{k}^{0} be the open set parametrizing smooth curves in Q, that is maps ψ^{\prime} : $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ of degree k; in M_{k}^{0}, we have two sections of E, denoted by $s_{\sigma_{1}}, s_{\sigma_{2}}$, defined by $s_{\sigma_{i}}\left(\psi^{\prime}\right)=$ class of $\left(\operatorname{Id} \times \psi^{\prime}\right)^{*}\left(\sigma_{i}\right)$ in $H^{1}\left(\psi^{* *}\left(\mathcal{O}_{\mathbf{P}^{1}}(-1)\right) \cong E_{\psi^{\prime}}\right.$. We have shown that the solutions of (2.9) in M_{k}^{0} are in bijection with the zeroes of the section $\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$ of $E \times E$; since $\operatorname{dim}_{\mathbb{C}} M_{k}=2 k+1, \operatorname{rank}_{\mathbb{C}} E=k-1$, the zero set of $\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$ is expected to be of real dimension 6 , as we want.

3. Study of the Section s_{σ}

The behaviour of the section s_{σ} of E on M_{k}^{0}, for σ a C^{∞} section of $p r_{1}^{*} \Omega^{0,1}\left(\mathbb{P}^{1}\right) \otimes$ $p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)$ on $Q=\mathbb{P}^{1} \times \mathbb{P}^{1}$ is easily described by the following

LEMMA 3.1. s_{σ} is of class \mathcal{C}^{∞} on M_{k}^{0}.
Proof. By definition, for $(C) \in M_{k}^{0}, s_{\sigma}((C))$ is represented by a $(0,1)$-form on C, which varies in a \mathcal{C}^{∞} way with (C). Now, we have the isomorphism $E_{(C)} \cong$ $H^{1}\left(C, p r_{2}^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)_{\mid C}\right)\right)$, where $C \subset Q$ corresponds to $(C) \in M_{k}^{0}$, and we have shown that the rank of this space is independant of (C). This implies that s_{σ} is of class \mathcal{C}^{∞}, because we have then the isomorphism $E^{*} \cong R^{0} p_{M_{*}}\left(K_{D / M_{k}} \otimes\left(p r_{2} \circ\right.\right.$ $\left.\left.p_{Q}\right)^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)\right) \cong H^{0}\left(Q, \mathcal{O}_{Q}(k-2,0)\right) \otimes \mathcal{O}_{M_{k}}(1)$, and it is immediate to see that for a holomorphic section η of the right hand side, the function $\left\langle s_{\sigma}, \eta\right\rangle$ is given by integrals over the curves C of forms varying in a \mathcal{C}^{∞} way with (C).

It is unfortunately not true that s_{σ} extends continuously over M_{k}. The rest of this section is devoted to the study of the singularities of s_{σ} and to the proof of the following
THEOREM 3.2. Let σ_{1}, σ_{2} be general \mathcal{C}^{∞} section of pr $r_{1}^{*} \Omega^{0,1}\left(\mathbb{P}^{1}\right) \otimes p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)$ on $Q=\mathbb{P}^{1} \times \mathbb{P}^{1}$; let $\bar{V}_{\sigma_{1}, \sigma_{2}}$ be the closure in M_{k} of the zero locus $V\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right) \subset M_{k}^{0}$ of the section $\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$ of $E \times E$ on M_{k}^{0}; then $V\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$ is smooth of dimension 6 , and $\bar{V}_{\sigma_{1}, \sigma_{2}}-V\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$ can be stratified by subsets contained in locally closed subvarieties of dimension $\leqslant 4$ of M_{k}, so $\bar{V}_{\sigma_{1}, \sigma_{2}}$ has a homology class in $H_{6}\left(M_{k}\right)$, which is Poincaré dual to the top Chern class of $E \times E$.

The proof of this theorem will be based on the following Proposition 3.3, for which we introduce a few notations: for any $(C) \in M_{k}$, one can write $C=C^{\prime} \cup V_{C}$, where $C^{\prime} \subset Q$ is a smooth member of $\left|\mathcal{O}_{Q}(l, 1)\right|, l \leqslant k$ and the vertical part $V_{C}=p r_{1}^{-1}\left(D_{C}\right)$ for some divisor D_{C} of degree $k-l$ on \mathbb{P}^{1}. We will denote by D_{C}^{\prime} the intersection $C^{\prime} \cap V_{C}$, and by $\psi_{C^{\prime}}: C^{\prime} \rightarrow \mathbb{P}^{1}$ the second projection, which is a morphism of degree l; writing $D_{C}^{\prime}=\Sigma_{i} n_{i} p_{i}$ for distinct points p_{i} of C^{\prime} we will denote by B_{C} the divisor $\Sigma_{i}\left(n_{i}-1\right) p_{i}$ that we will view as a divisor either on C^{\prime} or on $\mathbb{P}^{1} \stackrel{p r_{1}^{-1}}{=} C^{\prime}$. There is a natural structure of scheme on $Z:=\bigcup_{C \in M_{k}} D_{C}^{\prime} \subset M_{k} \times \mathbb{P}^{1}$ defined as follows: choosing homogeneous coordinates Y_{0}, Y_{1} on \mathbb{P}^{1}, a section of $\mathcal{O}_{Q}(k, 1)$ can be written as $p r_{1}^{*} P_{0} p r_{2}^{*} Y_{0}+p r_{1}^{*} P_{1} p r_{2}^{*} Y_{1}$, where $P_{i} \in H^{0}\left(\mathcal{O}_{\mathbb{P}_{1}}(k)\right)$ depend algebraically on $(C) \in M_{k} ; Z$ is then defined by $P_{0}=P_{1}=0$. This induces immediately a scheme structure on $B:=\bigcup_{C \in M_{k}} B_{C} \subset M_{k} \times \mathbb{P}^{1}$, the ideal being generated by the partial derivatives of P_{0}, P_{1} w. r. t. homogeneous coordinates on \mathbb{P}^{1}.

We have already used the isomorphism

$$
\begin{align*}
E^{*} & \cong R^{0} p_{M *}\left(K_{D / M_{k}} \otimes\left(p r_{2} \circ p_{Q}\right)^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)\right) \\
& \cong H^{0}\left(Q, \mathcal{O}_{Q}(k-2,0)\right) \otimes \mathcal{O}_{M_{k}}(1) \tag{3.12}
\end{align*}
$$

which depends essentially on the choice of an isomorphism $K_{Q} \cong \mathcal{O}_{Q}(-2,-2)$. Since $H^{0}\left(Q, \mathcal{O}_{Q}(k-2,0)\right) \cong H^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(k-2)\right)$ we get

$$
\begin{equation*}
E^{*} \cong R^{0} \pi_{M *}\left(\pi_{\mathbb{P}^{1}}^{*} \mathcal{O}_{\mathbb{P}^{1}}(k-2)\right) \otimes \mathcal{O}_{M_{k}}(1), \tag{3.13}
\end{equation*}
$$

where $\pi_{M}, \pi_{\mathbb{P}^{\prime}}$ are the projections of $M_{k} \times \mathbb{P}^{1}$ onto its factors. We have then the following
PROPOSITION 3.3. Let ϕ be a holomorphic section of $R^{0} \pi_{M *}\left(\pi_{\mathbb{P}^{1}}^{*} \mathcal{O}_{\mathbb{P}^{1}}(k-2) \otimes\right.$ $\left.\mathcal{I}_{B}\right) \otimes \mathcal{O}_{M_{k}}(1)$ on an open set U of M_{k}. Then the function $\left\langle s_{\sigma}, \phi\right\rangle$ defined on $U \cap M_{k}^{0}$ extends continuously on U.

Proof. Let $\left(C_{0}\right) \in U$ and $F_{C_{0}}$ an equation for $C_{0} \subset Q$. One can write $F_{C_{0}}=$ $p r_{1}^{*} P_{C_{0}} \cdot F_{C_{0}}^{\prime}$ where $P_{C_{0}}$ is an equation for $D_{C_{0}}$ and $F_{C_{0}}^{\prime} \in\left|\mathcal{O}_{Q}\left(k-l_{0}, 1\right)\right|$ defines a smooth curve in $Q, l_{0}=d^{0} D_{C_{0}}$. Using a partition of unity on Q, one may assume that σ is compactly supported in a product of disks $D_{1} \times D_{2}$ with affine coordinates z_{1}, z_{2} such that $D_{i}=\left\{z_{i},\left|z_{i}\right|<1\right\}$ and $(0,0) \in C_{0} \cap D_{1} \times D_{2}$, and the inhomogeneous polynomials corresponding to $P_{C_{0}}, F_{C_{0}}^{\prime}$ satisfy

$$
\begin{align*}
& p_{C_{0}}=z_{1}^{l} q_{C_{0}}\left(z_{1}\right), \quad q_{C_{0}}\left(z_{1}\right) \neq 0 \text { on } D_{1} \\
& f_{C_{0}}^{\prime}\left(z_{1}\right)=\tilde{h}_{C_{0}}\left(z_{1}\right)+z_{2} \tilde{g}_{C_{0}}\left(z_{1}\right), \tag{3.14}
\end{align*}
$$

where one of the polynomials $\tilde{f}_{C_{0}}, \tilde{g}_{C_{0}}$ does not vanish on D_{1}, since $f_{C_{0}}^{\prime}=0$ has no vertical component. We assume $\tilde{g}_{C_{0}} \neq 0$ on D_{1}, the other case working similarly. By shrinking D_{1} we may even assume $\left|q_{C_{0}} \tilde{g}_{C_{0}}\right| \geqslant c>0$ on D_{1}. Let $h_{C_{0}}=q_{C_{0}} \tilde{h}_{C_{0}}, g_{C_{0}}=q_{C_{0}} \tilde{g}_{C_{0}}$; a small generic deformation f_{C} of $f_{C_{0}}$ can be written as

$$
\begin{equation*}
f_{C}=p_{C}\left(z_{1}\right)\left(h_{C}\left(z_{1}\right)+z_{2} g_{C}\left(z_{1}\right)\right)+r_{C}\left(z_{1}\right) \tag{3.15}
\end{equation*}
$$

where we can normalize f_{C} by imposing the condition $g_{C}(0)=1$, and $d^{0} p_{C}=$ $l, p_{C}\left(z_{1}\right)=z_{1}^{l}+\Sigma_{i<l} \alpha_{i} z_{1}^{i}, d^{0} r_{C} \leqslant l-1, d^{0} h_{C} \leqslant k-l, d^{0} g_{C} \leqslant k-l$; the polynomials $p_{C}, h_{C}, g_{C}, r_{C}$ vary holomorphically with (C) in a neighbourhood (that we still call U) of $\left(C_{0}\right)$, and $p_{C_{0}}=z_{1}^{l}, r_{C_{0}}=0$. The variety $Z \cap U \times D_{1}$ is described by the equations $p_{C}\left(z_{1}\right)=r_{C}\left(z_{1}\right)$ and the variety $B \cap U \times D_{1}$ is described by the equations $p_{C}\left(z_{1}\right)=r_{C}\left(z_{1}\right)=\partial p_{C} / \partial z_{1}\left(z_{1}\right)=\partial r_{C} / \partial z_{1}\left(z_{1}\right)=0$. The restriction to $U \times D_{1}$ of a section ϕ of $\pi_{\mathbb{P}^{1}}^{*} \mathcal{O}_{\mathbb{P}^{1}}(k-2) \otimes \mathcal{I}_{B}$ can then be written as

$$
\begin{align*}
\phi\left(z_{1},(C)\right)= & \phi_{C}^{p}\left(z_{1}\right) p_{C}+\psi_{C}^{p}\left(z_{1}\right) \frac{\partial p_{C}}{\partial z_{1}}+\phi_{C}^{r}\left(z_{1}\right) r_{C} \\
& +\psi_{C}^{r}\left(z_{1}\right) \frac{\partial r_{C}}{\partial z_{1}} \tag{3.16}
\end{align*}
$$

where $\phi_{C}^{p}, \psi_{C}^{p}, \phi_{C}^{r}, \psi_{C}^{r}$ are holomorphic functions of $\left((C), z_{1}\right)$. We can write $\sigma=\psi\left(z_{1}, z_{2}\right) d \bar{z}_{1}$, where ψ is a compactly supported function of class \mathcal{C}^{∞} in $D_{1} \times D_{2}$. The couplings $\gamma((C)):=\left\langle s_{\sigma}, \phi\right\rangle$ defined on $U \cap M_{k}^{0}$ are obtained by taking the residue along C of the $p r_{2}^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(1)\right)$-valued meromorphic form $\phi . \eta / f_{C}$, and integrating over C the cup-product of this form with $\sigma_{\mid C}$; hence $\gamma((C))$ has
the following form

$$
\begin{align*}
\gamma((C))= & \gamma_{C}^{p}+\gamma_{C}^{p^{\prime}}+\gamma_{C}^{r}+\gamma_{C}^{r^{\prime}} \\
= & \int_{D_{1}} \phi_{C}^{p}\left(z_{1}\right) \psi\left(z_{1}, \frac{-r_{C}-p_{C} h_{C}}{p_{C} g_{C}}\right) \cdot \frac{1}{g_{C}\left(z_{1}\right)} \\
& +\psi_{C}^{p}\left(z_{1}\right) \psi\left(z_{1}, \frac{-r_{C}-p_{C} h_{C}}{p_{C} g_{C}}\right) \frac{\partial_{z_{1}} p_{C}}{p_{C} g_{C}} \\
& +\phi_{C}^{r}\left(z_{1}\right) \psi\left(z_{1}, \frac{-r_{C}-p_{C} h_{C}}{p_{C} g_{C}}\right) \frac{r_{C}}{p_{C} g_{C}} \\
& +\psi_{C}^{r}\left(z_{1}\right) \psi\left(z_{1}, \frac{-r_{C}-p_{C} h_{C}}{p_{C} g_{C}}\right) \frac{\partial_{z_{1}} r_{C}}{p_{C} g_{C}} \mathrm{~d} z_{1} \wedge \mathrm{~d} \bar{z}_{1} \tag{3.17}
\end{align*}
$$

and it suffices to show that each function $\gamma_{C}^{p}, \gamma_{C}^{p^{\prime}}, \gamma_{C}^{r}, \gamma_{C}^{r^{\prime}}$ extends continuously at $\left(C_{0}\right) \in U$. This is in fact obvious for γ_{C}^{p} and γ_{C}^{r} since the functions $\phi_{C}^{p}\left(z_{1}\right) \psi\left(z_{1},\left(-r_{C}-p_{C} h_{C}\right) /\left(p_{C} g_{C}\right)\right) / g_{C}\left(z_{1}\right)$ and $\phi_{C}^{r}\left(z_{1}\right) \psi\left(z_{1},\left(-r_{C}-p_{C} h_{C}\right)\right.$ $\left./\left(p_{C} g_{C}\right)\right) r_{C} /\left(p_{C} g_{C}\right)$ are bounded by a constant independant of (C) and are continuous along $\left(C_{0}\right) \times D_{1}^{*}$. To show that $\gamma_{C}^{p^{\prime}}$ extends continuously at $\left(C_{0}\right)$, consider the degree l covering $\tilde{U} \xrightarrow{r} U, \tilde{U} \subset U \times D_{1}^{l}$ obtained by taking the roots of p_{C} (which are all in D_{1} for (C) close to $\left.\left(C_{0}\right)\right)$, that is $\tilde{U}=\left\{\left((C), \lambda_{1}, \ldots, \lambda_{l}\right) \mid p_{C}=\Pi_{i}\left(z_{1}-\right.\right.$ $\left.\left.\lambda_{i}\right)\right\}$. It suffices to show that $r^{*}\left(\gamma_{C}^{p^{\prime}}\right)$ extends continuously at $\left(\left(C_{0}\right), 0, \ldots, 0\right) \in \tilde{U}$; but

$$
\begin{align*}
r^{*}\left(\gamma_{C}^{p^{\prime}}\right)= & \int_{D_{1}} \frac{\psi_{C}^{p}\left(z_{1}\right)}{g_{C}\left(z_{1}\right)} \psi\left(z_{1}, \frac{-r_{C}-p_{C} h_{C}}{p_{C} g_{C}}\right) \\
& \times\left(\sum_{i=1}^{i=l}\left(1 / z_{1}-\lambda_{i}\right)\right) \mathrm{d} z_{1} \wedge \mathrm{~d} \bar{z}_{1} \tag{3.18}
\end{align*}
$$

For (C) close enough to $\left(C_{0}\right)$, the $\lambda_{i}^{\prime} s$ are close to zero, so we may assume that $\psi\left(z_{1}, z_{2}\right)=0$ outside $\left|z_{1}-\lambda_{i}\right| \leqslant 1$. It follows that

$$
\begin{align*}
r^{*}\left(\gamma_{C}^{p^{\prime}}\right)= & \sum_{i} \int_{D_{1}} \frac{\psi_{C}^{p}\left(z_{1}+\lambda_{i}\right)}{g_{C}\left(z_{1}+\lambda_{i}\right)} \\
& \psi\left(z_{1}+\lambda_{i}, \frac{-r_{C}-p_{C} h_{C}}{\left(p_{C} g_{C}\right)\left(z_{1}+\lambda_{i}\right)}\right) \cdot \frac{1}{z_{1}} \mathrm{~d} z_{1} \wedge \mathrm{~d} \bar{z}_{1} \tag{3.19}
\end{align*}
$$

But the function $\left(\psi_{C}^{p} / g_{C}\right)\left(z_{1}+\lambda_{i}\right) \psi\left(z_{1}+\lambda_{i},\left(-r_{C}-p_{C} h_{C}\right) /\left(p_{C} g_{C}\right)\left(z_{1}+\lambda_{i}\right)\right)$ is bounded by a constant on D_{1}, and the function $1 / z_{1}$ is L^{1} on D_{1}; since for $z_{1} \neq 0$, one has

$$
\begin{align*}
& \lim _{\substack{(C) \rightarrow\left(C_{0}\right) \\
\lambda_{i} \rightarrow 0}} \frac{1}{z_{1}}\left(\frac{\psi_{C}^{p}}{g_{C}}\right)\left(z_{1}+\lambda_{i}\right) \psi\left(z_{1}+\lambda_{i}, \frac{-r_{C}-p_{C} h_{C}}{\left(p_{C} g_{C}\right)\left(z_{1}+\lambda_{i}\right)}\right) \\
& \quad=\frac{\psi_{C_{0}}^{p}}{g_{C_{0}}}\left(z_{1}\right) \psi\left(z_{1},-\frac{h_{C_{0}}}{g_{C_{0}}}\left(z_{1}\right)\right) \cdot \frac{1}{z_{1}} \tag{3.20}
\end{align*}
$$

one may apply Lebesgue dominated convergence theorem in order to conclude that $\lim _{\substack{(C) \rightarrow\left(C_{0}\right) \\ \lambda_{i} \rightarrow 0}} r^{*}\left(\gamma_{C}^{p^{\prime}}\right)$ exists and is equal to

$$
\begin{equation*}
l \int_{D_{1}} \frac{\psi_{C_{0}}^{p}}{g_{C_{0}}}\left(z_{1}\right) \psi\left(z_{1},-\frac{h_{C_{0}}}{g_{C_{0}}}\left(z_{1}\right)\right) \cdot \frac{1}{z_{1}} \mathrm{~d} z_{1} \wedge \mathrm{~d} \bar{z}_{1} \tag{3.21}
\end{equation*}
$$

The proof that $\gamma_{C}^{r^{\prime}}$ extends continuously at $\left(C_{0}\right)$ works similarly: in fact, using the result for $\gamma_{C}^{p^{\prime}}$ it suffices to prove it for

$$
\begin{align*}
\gamma_{C}^{\prime r^{\prime}}= & \int_{D_{1}} \psi_{C}^{r}\left(z_{1}\right) \psi\left(z_{1}, \frac{-r_{C}-p_{C} h_{C}}{p_{C} g_{C}}\right) \partial_{z_{1}} \\
& \times \frac{r_{C}+p_{C}}{p_{C} g_{C}} \mathrm{~d} z_{1} \wedge \mathrm{~d} \bar{z}_{1} . \tag{3.22}
\end{align*}
$$

Now we can write

$$
\begin{align*}
\gamma_{C}^{\prime r^{\prime}}= & \int_{D_{1}} \psi_{C}^{r}\left(z_{1}\right) \psi\left(z_{1}, \frac{-r_{C}-p_{C} h_{C}}{p_{C} g_{C}}\right) \\
& \times \partial_{z_{1}} \frac{r_{C}+p_{C}}{r_{C}+p_{C}\left(g_{C}\right)} \times \frac{r_{C}+p_{C}}{p_{C}} \mathrm{~d} z_{1} \wedge \mathrm{~d} \bar{z}_{1} \tag{3.23}
\end{align*}
$$

and because ψ is compactly supported in $D_{1} \times D_{2}$ the function

$$
\psi_{C}^{r}\left(z_{1}\right) \psi\left(z_{1}, \frac{-r_{C}-p_{C} h_{C}}{p_{C} g_{C}}\right) \frac{r_{C}+p_{C}}{p_{C} g_{C}}
$$

is bounded in D_{1}. But $d^{0} r_{C} \leqslant l-1$ and $\lim _{(C) \rightarrow\left(C_{0}\right)} r_{C}=0$ so the polynomial $p_{C}+r_{C}$ is normalized of degree l and has all its roots in D_{1} for (C) close to $\left(C_{0}\right)$; as before we can introduce the cover $\tilde{U} \xrightarrow{r} U$ parametrizing an ordering of the roots of $r_{C}+p_{C}$, so $r *\left(r_{C}+p_{C}\right)=\prod_{i=1}^{i=l}\left(z_{1}-\lambda_{i}\right)$, and we get

$$
\begin{align*}
r^{*}\left(\gamma_{C}^{\prime r^{\prime}}\right)= & \sum_{i} \int_{D_{1}} \psi_{C}^{r}\left(z_{1}+\lambda_{i}\right) \psi\left(z_{1}+\lambda_{i}, \frac{-r_{C}-p_{C} h_{C}}{p_{C} g_{C}}\left(z_{1}+\lambda_{i}\right)\right) \\
& \times \frac{r_{C}+p_{C}}{p_{C} g_{C}}\left(z_{1}+\lambda_{i}\right) \times \frac{1}{z_{1}} \mathrm{~d} z_{1} \wedge \mathrm{~d} \bar{z}_{1} \tag{3.24}
\end{align*}
$$

and we can apply Lebesgue dominated convergence theorem since the integrand is bounded by $M /\left|z_{1}\right|$ and converges weakly to the L^{1} function

$$
\begin{equation*}
\psi_{C_{0}}^{r}\left(z_{1}\right) \psi\left(z_{1}, \frac{-h_{C_{0}}}{g_{C_{0}}\left(z_{1}\right)}\right) \frac{1}{z_{1} g_{C_{0}}\left(z_{1}\right)} \tag{3.25}
\end{equation*}
$$

outside 0 , when (C) tends to $\left(C_{0}\right)$. So the proposition is proved.
In fact, the proof of the proposition gives as well the interpretation of the limit of the functions $\left\langle s_{\sigma}, \phi\right\rangle$: we have the decomposition $C_{0}=C_{0}^{\prime} \cup p r_{1}^{-1}\left(D_{C_{0}}\right)$, with C_{0}^{\prime} smooth and $D_{C_{0}}^{\prime}=\Sigma_{i} n_{i} p_{i}, n_{i} \neq 0$, where $D_{C_{0}}^{\prime}$ is the inverse image of $D_{C_{0}}$ under the isomorphism $p r_{1}: C_{0}^{\prime} \rightarrow \mathbb{P}^{1}$. Let $D_{C_{0}}^{\prime \prime}:=\Sigma_{i} p_{i}$; denote by $\mathcal{C}_{D_{C_{0}}^{\prime}}^{\infty}\left(p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)\right)$ the space of \mathcal{C}^{∞} sections τ of $p r_{2}^{*} \mathcal{O}_{\mathrm{P}^{1}}(-1)_{\mid C_{0}^{\prime}}$ which satisfy the condition: $\tau\left(p_{i}\right)=\tau\left(p_{i}\right)=\cdots=\left(\partial_{z}\right)^{\left(n_{i}-1\right)} \tau\left(p_{i}\right)=0$ for all p_{i} and for any coordinate z on C_{0}^{\prime} at p_{i}; similarly, let $\mathcal{C}_{D_{C_{0}}^{\prime \prime}}^{\infty}\left(p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)\right)$ the space of \mathcal{C}^{∞} sections τ of $p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)_{\mid C_{0}^{\prime}}$ which satisfy the condition: $\tau\left(p_{i}\right)=0, \forall p_{i}$. We have

LEMMA 3.4. There are natural isomorphisms

$$
\begin{align*}
& H^{1}\left(C_{0}, p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)_{\mid C_{0}}\right) \cong A_{C_{0}^{\prime}}^{0,1}\left(p r_{2}^{*} \mathcal{O}_{\mathbb{P}_{1}}(-1)_{\mid C_{0}^{\prime}}\right) / \bar{\partial} \mathcal{C}_{D_{C_{0}^{\prime}}^{\prime}}^{\infty}\left(p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1} 1}(-1)\right), \\
& H^{1}\left(C_{0}^{\prime}, p r_{2}^{*} \mathcal{O}(-1)_{\mid C_{0}^{\prime}} \otimes \mathcal{I}_{D_{C_{0}}^{\prime \prime}}\right) \\
& \quad \cong A_{C_{0}^{\prime}}^{0,1}\left(p r_{2}^{*} \mathcal{O}(-1)_{\mid C_{0}^{\prime}}\right) / \bar{\partial} \mathcal{C}_{D_{C_{0}}^{\prime \prime}}^{\infty}\left(p r_{2}^{*} \mathcal{O}(-1)\right) . \tag{3.26}
\end{align*}
$$

Proof. Consider the exact sequence of coherent sheaves on C_{0}

$$
\begin{align*}
0 \rightarrow p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)_{\mid C_{0}^{\prime}} \otimes \mathcal{I}_{D_{C_{0}}^{\prime}} & \rightarrow p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)_{\mid C_{0}} \\
& \rightarrow p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)_{\mid V_{C_{0}}} \rightarrow 0 . \tag{3.27}
\end{align*}
$$

It is easy to see that the last sheaf has trivial cohomology, and it follows that

$$
\begin{equation*}
H^{1}\left(C_{0}, p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)_{\mid C_{0}}\right) \cong H^{1}\left(C_{0}^{\prime}, p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)_{\mid C_{0}^{\prime}} \otimes \mathcal{I}_{D_{C_{0}}^{\prime}}\right) \tag{3.28}
\end{equation*}
$$

so we are reduced to prove the existence of natural isomorphisms

$$
\begin{align*}
& H^{1}\left(C_{0}^{\prime}, p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)_{\mid C_{0}^{\prime}} \otimes \mathcal{I}_{D_{C_{0}}^{\prime}}\right) \\
& \quad \cong A_{C_{0}^{\prime}}^{0,1}\left(p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)_{\mid C_{0}^{\prime}}\right) / \bar{\partial} C_{D_{C_{0}}^{\prime}}^{\infty}\left(p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)\right), \\
& H^{1}\left(C_{0}^{\prime}, p r_{2}^{*} \mathcal{O}(-1)_{\mid C_{0}^{\prime}} \otimes \mathcal{I}_{D_{C_{0}}^{\prime \prime}}\right) \\
& \quad \cong A_{C_{0}^{\prime}}^{0,1}\left(p r_{2}^{*} \mathcal{O}(-1)_{\mid C_{0}^{\prime}}^{\prime}\right) / \bar{\partial} C_{D_{C_{0}}^{\prime \prime}}^{\infty}\left(p r_{2}^{*} \mathcal{O}(-1)\right) \tag{3.29}
\end{align*}
$$

which is immediate because we have the fine resolution

$$
\begin{align*}
0 \rightarrow p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)_{\mid C_{0}^{\prime}} \otimes \mathcal{I}_{D_{C_{0}}^{\prime}} & \rightarrow \mathcal{A}_{D_{C_{0}}^{\prime}}^{0}\left(p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)\right) \\
& \xrightarrow{\bar{o}} \mathcal{A}_{C_{0}^{\prime}}^{0,1}\left(p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)_{\mid C_{0}^{\prime}}\right) \rightarrow 0, \tag{3.30}
\end{align*}
$$

where $\mathcal{A}_{D_{C_{0}}^{\prime}}^{0}, \mathcal{A}^{0,1}$ are now the sheaves of $\mathcal{C}_{D_{C_{0}}}^{\infty}$, sections and of $(0,1)$-forms respectively. One gets similarly the second isomorphism.

Now, by the Lemma 3.4, $\sigma_{\mid C_{0}^{\prime}}$ gives a class $s_{\sigma}\left(C_{0}\right) \in H^{1}\left(C_{0}^{\prime}, p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)_{\mid C_{0}^{\prime}} \otimes\right.$ $\mathcal{I}_{D_{C_{0}}^{\prime \prime}}$, and this group is naturally a quotient of $E_{\left(C_{0}\right)}=H^{1}\left(C_{0}, p r_{2}^{*} \mathcal{O}_{P^{1}}(-1)_{\mid C_{0}}\right)$. It is immediate to verify that $H^{1}\left(C_{0}^{\prime}, p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)_{\mid C_{0}^{\prime}} \otimes \mathcal{I}_{D "} c_{0}\right)$ identifies to the dual of $H^{0}\left(\mathcal{O}_{\mathbb{P}^{1}}(k-2) \otimes \mathcal{I}_{B_{C_{0}}}\right) \subset H^{0}\left(\mathcal{O}_{\mathbb{P}^{1}}(k-2)\right.$) (modulo the choice of a isomorphism $K_{Q} \cong \mathcal{O}_{Q}(-2,-2)$ and of an equation for $\left.C_{0}\right)$ and the computation of the limits in the proof of the Proposition 3.3 shows

LEMMA 3.5. Let ϕ be a local holomorphic section of $R^{0} \pi_{M *}\left(\pi_{\mathbf{P}^{*}}^{*} \mathcal{O}_{\mathbb{P}^{1}}(k-2) \otimes\right.$ $\left.\mathcal{I}_{B}\right) \otimes \mathcal{O}_{M_{k}}(1)$ near $\left(C_{0}\right)$; then

$$
\begin{equation*}
\lim _{(C) \rightarrow\left(C_{0}\right)}\left\langle s_{\sigma}, \phi\right\rangle=\left\langle s_{\sigma}\left(\left(C_{0}\right)\right), \phi\left(\left(C_{0}\right)\right)\right\rangle . \tag{3.31}
\end{equation*}
$$

Now we can show the following Proposition 3.6, which shows the first part of the Theorem 3.2; for each sequence d. $=\left(d_{1}, \ldots, d_{k}\right)$ of integers, with $\Sigma_{i} \mathrm{id}_{i} \leqslant k$, we denote by $M_{k}^{d .}$ the smooth locally closed subvariety of M_{k} consisting of curves $C=C^{\prime} \cup V_{C}$, such that C^{\prime} is a smooth member of $\mid \mathcal{O}_{Q}\left(k-\Sigma_{i} \mathrm{id}_{i}, 1\right)$ and $V_{C}=p r_{1}^{-1}\left(D_{C}\right)$ where D_{C} has d_{i} points of multiplicity i for each i. The $M_{k}^{d .}$, s form a stratification of M_{k} and $M_{k}^{0}=M_{k}^{(0, \ldots, 0)}$. On each $M_{k}^{d .}, \sigma$ gives a section of the bundle $E^{d .}$ with fiber at C the space $H^{1}\left(C^{\prime}, p r_{2}^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1) \otimes \mathcal{I}_{D_{C}^{\prime \prime}}\right)\right.$, that we will denote by s_{σ}^{d}. As in Lemma 3.1, it is immediate to prove that $s_{\sigma}^{d .}$ is of class \mathcal{C}^{∞} on $M_{k}^{d .}$. We have

PROPOSITION 3.6. Let σ_{1}, σ_{2} be two \mathcal{C}^{∞} sections of pr $r_{1}^{*} \Omega^{0,1}\left(\mathbb{P}^{1}\right) \otimes p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)$ on Q. Then $\bar{V}_{\sigma_{1}, \sigma_{2}}$ is contained in $\sqcup_{d .} V\left(s_{\sigma_{1}}^{d_{1}}, s_{\sigma_{2}}^{d_{i}}\right)$; if σ_{i} are general, for each d., $V\left(s_{\sigma_{1}}^{d,}, s_{\sigma_{2}}^{d}\right)$ is smooth of real dimension $6-2 \Sigma_{i} d_{i}$.

Proof. Let $(C) \in M_{k}^{d}$, and let $D_{C}=\Sigma_{i} n_{i} p_{i}, B_{C}=\Sigma_{i}\left(n_{i}-1\right) p_{i}$. Consider $H^{0}\left(\mathcal{O}_{\mathbb{P}^{1}}(k-2) \otimes \mathcal{I}_{B_{C}}\right) \otimes \mathcal{O}_{M_{k}}(1)_{(C)} \subset E_{(C)}^{*}$. In a neighbourhood U of (C), we can find a holomorphic subbundle F of E^{*} whose sheaf of sections is contained in $R^{0} \pi_{M_{*}}\left(\pi_{\mathbb{P}^{1}}^{*} \mathcal{O}_{\mathbb{P}^{1}}(k-2) \otimes \mathcal{I}_{B}\right) \otimes \mathcal{O}_{M_{k}}(1)$ and such that $F_{(C)}=H^{0}\left(\mathcal{O}_{\mathbb{P}^{1}}(k-\right.$ 2) $\left.\otimes \mathcal{I}_{B_{C}}\right) \otimes \mathcal{O}_{M_{k}}(1)_{(C)}$. Let $E /\left(F^{\perp}\right) \cong F^{*}$ be the corresponding quotient; the Proposition 3.3 shows that the projection $p_{F}\left(s_{\sigma}\right)$ of s_{σ} in F^{*} extends continuously. Furthermore, by definition of F and by the Lemma 3.5, we have $F_{\mid M_{k}^{d} \cap U}^{*}=E_{k}^{d}$
and we have the equality in $U \cap M_{k}^{d}$.

$$
\begin{equation*}
p_{F}\left(s_{\sigma}\right)_{\mid M_{k}^{d .}}=s_{\sigma}^{d .} \tag{3.32}
\end{equation*}
$$

Now we have on $U \cap M_{k}^{0}, V\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right) \subset V\left(p_{F}\left(s_{\sigma_{1}}\right), p_{F}\left(s_{\sigma_{2}}\right)\right)$ for σ_{1}, σ_{2} as above and by continuity of $p_{F}\left(s_{\sigma_{i}}\right)$, we get

$$
\begin{equation*}
\bar{V}_{\sigma_{1}, \sigma_{2}} \cap U \subset V\left(p_{F}\left(s_{\sigma_{1}}\right), p_{F}\left(s_{\sigma_{2}}\right)\right) \tag{3.33}
\end{equation*}
$$

Finally, the equality (3.32) gives

$$
\begin{equation*}
\bar{V}_{\sigma_{1}, \sigma_{2}} \cap U \cap M_{k}^{d .} \subset V\left(s_{\sigma_{1}}^{d .}, s_{\sigma_{2}}^{d .}\right) \cap U \tag{3.34}
\end{equation*}
$$

which shows the first part of the proposition.
Now note that the real dimension of $M_{k}^{d .}$ is equal to $2\left(2\left(k-\Sigma_{i} i d_{i}+1\right)-1+\right.$ $\left.\Sigma_{i} d_{i}\right)$, and the rank over R of $E^{d .} \times E^{d .}$ is equal to $4\left(k-1-\Sigma_{i}(i-1) d_{i}\right)$. Since $s_{\sigma_{i}}^{d_{i}}$ are of class \mathcal{C}^{∞} over $M_{k}^{d .}$, the fact that $V\left(s_{\sigma_{1}}^{d_{0}}, s_{\sigma_{2}}^{d_{0}}\right)$ is smooth of real dimension $6-2\left(\Sigma_{i} d_{i}\right)$ for general σ_{1}, σ_{2} follows from the following
LEMMA 3.7. There exists a finite number of \mathcal{C}^{∞} sections σ_{i} of $p r_{1}^{*} \Omega^{0,1}\left(\mathbb{P}^{1}\right) \otimes$ $p r_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)$ on Q such that the corresponding sections $s_{\sigma_{i}}^{d .}$ generate $E^{d .}$ on $M_{k}^{d .}$ for any sequence d..

Proof. Since M_{k} is compact, it suffices to check it locally on M_{k}. Now let $(C) \in M_{k}$; for σ supported away from Sing C, one shows exactly as in 3.1 that s_{σ} extends as \mathcal{C}^{∞} section of E at (C). Next, using Lemma 3.4, one checks easily that the values at (C) of such sections s_{σ} generate the fiber $E_{(C)}$. So they generate E in a neighbourhood U of (C) and its quotients $E^{d .}$ in $U \cap M_{k}^{d .}$.

It follows from this proposition that for general $\left(\sigma_{1}, \sigma_{2}\right), \bar{V}_{\sigma_{1}, \sigma_{2}}$ has a homology class $\left[\bar{V}_{\sigma_{1}, \sigma_{2}}\right] \in H_{6}\left(M_{k}, \mathbb{Z}\right)$, which is defined using the natural orientation of $V_{\sigma_{1}, \sigma_{2}}$ coming from the complex structure on M_{k} and $E \times E$. Now we have
PROPOSITION 3.8. $\left[\bar{V}_{\sigma_{1}, \sigma_{2}}\right]$ is Poincaré dual to the top Chern class of $E \times E$.
Proof. We show first the existence of a continuous section $\left(s_{1}^{\prime}, s_{2}^{\prime}\right)$ of $E \times E$ with zero locus equal to $\sqcup_{d .} V\left(\left(s_{\sigma_{1}}^{d_{1}}, s_{\sigma_{2}}^{d .}\right)\right)$: consider the coherent subsheaf $\left(E^{*}\right)^{\prime}=$ $R^{0} \pi_{M *}\left(\pi_{\mathbb{P}^{1}}^{*} \mathcal{O}_{\mathbb{P}^{1}}(k-2) \otimes \mathcal{I}_{B}\right) \otimes \mathcal{O}_{M_{k}}(1) \subset E^{*}$; let F be a holomorphic vector bundle on M_{k} such that there exists a surjective morphism $\phi^{\prime}: F \rightarrow\left(E^{*}\right)^{\prime}$. We denote by ϕ the composition of ϕ^{\prime} with the inclusion $\left(E^{*}\right)^{\prime} \subset E^{*}$. Putting hermitian metrics on F and E^{*}, we construct a \mathcal{C}^{∞} complex linear endomorphism $\Phi=\phi \circ^{t} \phi: E^{*} \rightarrow E^{*}$, which has the property: $\forall(C) \in M_{k}, \operatorname{Im} \Phi_{(C)}=\operatorname{Im} \phi_{(C)}=H^{0}\left(\mathcal{O}_{\mathbb{P}^{1}}(k-2) \otimes\right.$ $\left.\mathcal{I}_{B_{C}}\right) \otimes \mathcal{O}_{M_{k}}(1)_{(C)}$. Also, by construction, for any \mathcal{C}^{∞} section τ of $E^{*}, \Phi(P)$ can be written locally as $\Sigma_{j} f_{j} \tau_{j}$ where f_{j} are \mathcal{C}^{∞} complex functions and τ_{j} are sections of $\left(E^{*}\right)^{\prime}$. It follows from the Proposition 3.3 that for any such τ, the function $\left\langle s_{\sigma}, \tau\right\rangle$ is continuous on M_{k}, which means that $s^{\prime}=\Phi^{*}\left(s_{\sigma}\right)$ is a continuous section of E. Furthermore, for $(C) \in M_{k}^{d .}, s^{\prime}$ vanishes at (C) if and only if $s_{\sigma}^{d .}$ vanishes at
(C), by Lemma 3.5. Applying this construction to the couple (σ_{1}, σ_{2}) we get a continuous section $\left(s_{1}^{\prime}, s_{2}^{\prime}\right)$ of $E \times E$ which vanishes exactly on $\sqcup_{d .} V\left(\left(s_{\sigma_{1}}^{d_{0}}, s_{\sigma_{2}}^{d_{\cdot}}\right)\right.$.

Notice that $\left(s_{1}^{\prime}, s_{2}^{\prime}\right)$ is smooth when $\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$ is, so $\left(s_{1}^{\prime}, s_{2}^{\prime}\right)$ is smooth on M_{k}^{0}; furthermore, since the map Φ^{*} is \mathbb{C}-linear the orientation of $V\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$ corresponding to the section $\left(s_{1}^{\prime}, s_{2}^{\prime}\right)$ coincides with the one given by the section $\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$.

Now, using approximation by smooth sections, we can construct a \mathcal{C}^{∞} section $\left(s_{1}^{\prime \prime}, s_{2}^{\prime \prime}\right)$ of $E \times E$, which is equal to $\left(s_{1}^{\prime}, s_{2}^{\prime}\right)$ outside an arbitrarily small neighbourhood of $M_{k}-M_{k}^{0}$, and such that the zero locus $V\left(s_{1}^{\prime \prime}, s_{2}^{\prime \prime}\right)$ is contained in the union of $V\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$ and of an arbitrarily small neighbourhood of $\sqcup_{d . \neq(0 \ldots, 0)} V\left(\left(s_{\sigma_{1}}^{d_{0}}, s_{\sigma_{2}}^{d_{0}}\right)\right)$. Using the fact that $\operatorname{dim} V\left(\left(s_{\sigma_{1}}^{d_{0}}, s_{\sigma_{2}}^{d_{0}}\right)\right) \leqslant 4$ for $d . \neq$ $(0, \ldots, 0)$, by Proposition 3.6 , any homology class of dimension $2 \operatorname{dim} M_{k}-6$ can be represented by a subvariety W of M_{k} which does not meet a small neighbourhood of $\sqcup_{d . \neq(0 \ldots, 0)} V\left(\left(s_{\sigma_{1}}^{d .}, s_{\sigma_{2}}^{d .}\right)\right)$. So W may be choosen to meet $V\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$ transversally and only in the open set where $\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$ and ($s_{1}^{\prime \prime}, s_{2}^{\prime \prime}$) coincide, and then the intersection number $W \cdot \bar{V}_{\sigma_{1}, \sigma_{2}}=W \cdot V\left(s_{1}^{\prime \prime}, s_{2}^{\prime \prime}\right)$ is simply the top Chern class of $E \times E$ evaluated on W, which proves the Proposition 3.8 , hence also the Theorem 3.2.

4. Proof of the Theorem 1.1

The homology class that we want to compute is defined as follows: let $\left(J_{\epsilon}, \nu\right)$ be a small general deformation of $(J, 0)$, where J is the original complex structure; there is a component $W_{k A, J_{\epsilon}, \nu}^{V}$ of $W_{k A, J_{\epsilon}, \nu}$ made of curves contained in a given small neighbourhood V of $\mathbb{P}^{1} \subset X$ (cf. Introduction); one can construct a compactification $\bar{W}_{k A, J_{\epsilon}, \nu}^{V}$ of $W_{k A, J_{\epsilon}, \nu}^{V}$, such that the points of the boundary parametrize curves in $\mathbb{P}^{1} \times X$, which are limits of graphs of functions $\psi \in W_{k A, J_{\epsilon}, \nu}^{V}$. One has then a family of curves

$$
\begin{equation*}
\xrightarrow{D} \stackrel{\left(p_{2}, p_{3}\right)}{p_{1}} \downarrow \mathbb{P}^{1} \times V \subset \mathbb{P}^{1} \times X \tag{4.35}
\end{equation*}
$$

which induces the family of threefolds

$$
\begin{align*}
& D \times{ }_{p_{1}} D \times_{p_{1}} D \xrightarrow{\left(p_{2}^{3}, p_{3}^{3}\right)} \mathbb{P}^{1^{3}} \times V^{3} \subset \mathbb{P}^{1^{3}} \times X^{3} \\
& \quad p_{1}^{3} \\
& \quad \bar{W}_{k A, J_{\epsilon}, \nu}^{V} . \tag{4.36}
\end{align*}
$$

The class that we want to compute is the class of $p_{3}^{3}\left(\left(p_{2}^{3}\right)^{-1}\left(\left(x_{1}, x_{2}, x_{3}\right)\right)\right)$, for x_{1}, x_{2}, x_{3} three distinct generic points of \mathbb{P}^{1}. Now we do this computation with $W_{k A, J_{\epsilon}, \nu}^{V}$ replaced by $V\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$, that we have identified set theoretically to a component of $W_{k A, J, \nu}^{V}$ for special ν in Section 2; as before we identify V to a neighbourhood of the zero section of the bundle $\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$, and call $\pi: V \rightarrow \mathbb{P}^{1}$ the projection; we may assume that π induces an isomorphism $\pi_{*}: H_{*}(V) \cong H_{*}\left(\mathbb{P}^{1}\right)$ hence an isomorphism $\pi_{*}^{3}: H_{*}\left(V^{3}\right) \rightarrow H_{*}\left(\mathbb{P}^{3}\right)$. Now, by construction, for $(C) \in V\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$, the associated map $\psi: \mathbb{P}^{1} \rightarrow V$ solution of the equation (2.9), satisfies $\pi \circ \psi=\psi_{(C)}$, where $\psi_{(C)}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ is the map determined by $C \subset Q=\mathbb{P}^{1} \times \mathbb{P}^{1}$. It follows that the image under (Id, π) of the family (4.35) is simply the restriction to $V\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right) \subset M_{k}^{0}$ of the divisor D of Section 2.

$$
\begin{align*}
& D_{\mid V\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)} \xrightarrow{\left(p_{2}, \pi \circ p_{3}\right)} \mathbb{P}^{1} \times \mathbb{P}^{1} \\
& \quad p_{1} \mid \\
& V\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right) . \tag{4.37}
\end{align*}
$$

Since we know that $\bar{V}_{\sigma_{1}, \sigma_{2}} \subset M_{k}$ has for homology class the Poincaré dual of the top Chern class of $E \times E$, with $E \cong \mathcal{O}_{M_{k}}^{k-1} \otimes \mathcal{O}_{M_{k}}(1)$, we find as in [1] that $\left[\bar{V}_{\sigma_{1}, \sigma_{2}}\right]$ is the homology class of a $\mathbb{P}^{3} \subset M_{k} \cong \mathbb{P}^{2 k+1}$. It is then immediate to conclude that $\left(\pi \circ p_{3}\right)_{*}^{3}\left(\left[p_{2}^{3-1}\left(\left(x_{1}, x_{2}, x_{3}\right)\right)\right]\right)$ is equal to the fundamental homology class of \mathbb{P}^{13}.

In order to complete the proof of the Theorem 1.1, it remains to verify that the computation of the class of $p_{3}^{3}\left(\left(p_{2}^{3}\right)^{-1}\left(\left(x_{1}, x_{2}, x_{3}\right)\right)\right.$) (for generic $\left.J_{\epsilon}, \nu\right)$ can be done using $V\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$, that is we have to verify the following points
LEMMA 4.1. $W_{k A, J, \nu}^{0}$ is smooth along $V\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$, for ν as in Section 2 and generic σ_{i}.
In other words we have to identify 'schematically' $W_{k A, J, \nu}^{V}$ and $V\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$.
LEMMA 4.2. The orientation of $V\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$ as the zero set of a section of a complex vector bundle on M_{k} coincide with the natural orientation of $W_{k A, J, \nu}^{V}$ (defined in [9], Chapter 3).

LEMMA 4.3. For $\left(J_{n}, \nu_{n}\right)$ a sequence of generic deformations of $(J, 0)$ converging to $(J, \nu), \bar{W}_{k A, J_{n}, \nu_{n}}^{V}$ converges to $\bar{V}_{\sigma_{1}, \sigma_{2}}$.
(That is we have to exclude the existence of a limit component which would be made of curves in $\mathbb{P}^{1} \times X$ with a vertical component).

Proof of Lemma 4.1. We want to show that for $(C) \in V\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$ defining $\psi_{(C)}$: $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ such that $\left(\operatorname{Id} \times \psi_{(C)}\right)^{*}\left(\left(\sigma_{1}, \sigma_{2}\right)=\left(\bar{\partial} \psi_{1}, \bar{\partial} \psi_{2}\right), \psi_{i} \in \mathcal{C}^{\infty}\left(\psi_{(C)}^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)\right)\right.\right.$, and $\psi: \mathbb{P}^{1} \rightarrow V, \psi=\left(\psi_{(C)}, \psi_{1}, \psi_{2}\right)$, where V is identified to an open set of N_{ϕ} as in Section 2, the tangent space at (C) of $V\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$ and at ψ of $W_{k A, J, \nu}^{V}$ coincide. But the last space is the kernel of the linearized equation

$$
\begin{equation*}
D_{\psi}:=D\left(\bar{\partial}-(\operatorname{Id}, \psi)^{*} \nu\right): \mathcal{C}^{\infty}\left(\psi^{*} T_{X}\right) \rightarrow A_{\mathbb{P}^{1}}^{0,1}\left(\psi^{*} T_{X}\right) . \tag{4.38}
\end{equation*}
$$

The bundle $T_{X \mid V}$ fits into the exact sequence

$$
\begin{equation*}
0 \rightarrow \pi^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)\right) \rightarrow T_{X \mid V} \rightarrow \pi^{*}\left(T_{\mathbb{P}^{1}}\right) \rightarrow 0 \tag{4.39}
\end{equation*}
$$

and $\nu=\left((\operatorname{Id} \times \pi)^{*} \sigma_{1},(\operatorname{Id} \times \pi)^{*} \sigma_{2}\right)$. Since $\pi \circ \psi=\psi_{C}$ is holomorphic, it is
 that the induced quotient map $\bar{D}_{\psi}: \mathcal{C}^{\infty}\left(\psi_{(C)}^{*}\left(T_{\mathbb{P}^{1}}\right)\right) \rightarrow A^{0,1}\left(\psi_{(C)}^{*}\left(T_{\mathbb{P}^{1}}\right)\right)$ is also the $\bar{\partial}$-operator. Since $\bar{\partial}: \mathcal{C}^{\infty}\left(\psi_{(C)}^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)\right)\right) \rightarrow A^{0,1}\left(\psi_{(C)}^{*}\right)\left(\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus\right.$ $\left.\left.\mathcal{O}_{\mathbb{P}^{1}}(-1)\right)\right)$ is injective, and $\bar{\partial}: \mathcal{C}^{\infty}\left(\psi_{(C)}^{*}\left(T_{\mathbb{P}^{1}}\right)\right) \rightarrow A^{0,1}\left(\psi_{(C)}^{*}\left(T_{\mathbb{P}^{1}}\right)\right)$ is surjective, we get an exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Ker} D_{\psi} \rightarrow \operatorname{Ker} \bar{\partial}_{\psi_{C}^{*} T_{\mathrm{p} 1}} \xrightarrow{\beta} \operatorname{Coker} \bar{\partial}_{\left(\psi_{(C)}^{*}\right)}\left(\mathcal{O}_{\mathrm{p} 1}(-1) \oplus \mathcal{O}_{\mathrm{p} 1}(-1)\right) \rightarrow 0 \tag{4.40}
\end{equation*}
$$

and identifying the second term to $T_{M_{k}(C)}$ and the last term to $H^{1}\left(\psi_{(C)}^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus\right.\right.$ $\left.\left.\mathcal{O}_{\mathbb{P} 1}(-1)\right)\right)=(E \times E)_{(C)}$, it is immediate to verify that β is equal to the linearization of $\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$ at (C), which proves Lemma 4.1.

Proof of Lemma 4.2. The orientation of the variety $W_{k A, J, \nu}^{V}$ at the point ψ corresponding to (C) is described as follows (cf. [9]): Replacing \mathcal{C}^{∞} sections of the bundles $\psi^{*} T_{X}, \Omega^{0,1}\left(\psi^{*} T_{X}\right)$ by sections with L^{1} derivatives up to order k, the operator D_{ψ} gives a Fredholm operator (surjective at a smooth point)

$$
\begin{equation*}
D_{\psi}: W^{k, 1}\left(\psi^{*} T_{X}\right) \rightarrow W^{k-1,1}\left(\Omega^{0,1}\left(\psi^{*} T_{X}\right)\right) . \tag{4.41}
\end{equation*}
$$

The observation is that both spaces have natural (continuous) complex structures and that the \mathbb{C}-antilinear part of D_{ψ} is of order 0 , hence is compact. So there is a natural (linear) homotopy from D_{ψ} to its \mathbb{C}-linear part D_{ψ}^{L} in the space of Fredholm operators from $W^{k, 1}\left(\psi^{*} T_{X}\right)$ to $W^{k-1,1}\left(\Omega^{0,1}\left(\psi^{*} T_{X}\right)\right)$. The orientation on $T_{W_{k A, J, \nu}^{V}}$ at the point ψ is obtained by using the real line bundle $\operatorname{Det}_{t}:=$ $\Lambda_{\mathbb{R}}^{\max } \operatorname{Ker} D_{t} \otimes\left(\wedge_{\mathbb{R}}^{\max } \operatorname{Coker} D_{t}\right)^{*}$ on $[0,1]$, where $D_{t}=(1-t) D_{\psi}+t D_{\psi}^{L}$. Since for $t=1, D_{1}=D_{\psi}^{L}$ is complex linear Det $_{1}$ is naturally oriented, hence Det $_{0}=$ $\wedge_{\mathbb{R}}^{\text {max }} T_{W_{k A, J, \nu}^{V}}$ is also naturally oriented.

Now as mentioned above, the operator D_{ψ} induces the complex linear operators

$$
\begin{equation*}
\bar{\partial}: W^{k, 1}\left(\psi_{(C)}^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)^{2}\right)\right) \rightarrow W^{k-1,1}\left(\Omega^{0,1}\left(\psi_{(C)}^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)^{2}\right)\right)\right) \tag{4.42}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\partial}: W^{k, 1}\left(\psi_{(C)}^{*} T_{\mathbb{P}^{1}}\right) \rightarrow W^{k-1,1}\left(\Omega^{0,1}\left(\psi_{(C)}^{*} T_{\mathbb{P}^{1}}\right)\right) . \tag{4.43}
\end{equation*}
$$

So its complex linear part satisfies the same property, as do all the operators D_{t}. It follows that for each t we have an exact sequence

$$
\begin{align*}
0 & \rightarrow \operatorname{Ker} D_{t} \rightarrow \operatorname{Ker} \bar{\partial}_{\psi_{C}^{*}} T_{\mathbb{P}^{1}} \xrightarrow{\beta_{t}} \operatorname{Coker} \bar{\partial}_{\psi_{(C)}^{*}}\left(\mathcal{O}_{\mathbb{P} 1}(-1)^{2}\right) \\
& \rightarrow \operatorname{Coker} D_{t} \rightarrow 0, \tag{4.44}
\end{align*}
$$

hence a canonical isomorphism

$$
\begin{equation*}
\operatorname{Det}_{t} \cong \bigwedge_{\mathbb{R}}^{\max } \operatorname{Ker} \bar{\partial}_{\psi_{C}^{*} T_{\mathbb{P}^{1}}} \otimes\left(\bigwedge_{\mathbb{R}}^{\max } \operatorname{Coker} \bar{\partial}_{\psi_{(C)}^{*}\left(\mathcal{O}_{\mathbb{P}} 1(-1)^{2}\right)}\right)^{*} \tag{4.45}
\end{equation*}
$$

which is easily seen to be continuous. The right hand side has a natural orientation coming from the complex structure on $\operatorname{Ker} \bar{\partial}$ and Coker $\bar{\partial}$. But for $t=1$, the exact sequence (4.44) is an exact sequence of complex vector spaces and complex linear maps, so the isomorphism (4.45) for $t=1$ is compatible with the complex orientation. On the other hand, for $t=0$, the isomorphism (4.45) induces on the left hand side (which is equal to $\bigwedge_{\mathbb{R}}^{\max } T_{W_{k A, J, \nu}^{V}}$ at ψ) the orientation of $V\left(s_{\sigma_{1}}, s_{\sigma_{1}}\right)$, given by the complex structure on M_{k} and the complex structure on $E \times E$. So Lemma 4.2 is proved.

Proof of Lemma 4.3. We use the following version of the compacity theorem (cf. [4], [12])

THEOREM 4.4. Assume $\left(J_{n}, \nu_{n}\right)$ converges to (J, ν) and let $\psi_{n} \in W_{k A, J_{n}, \nu_{n}}^{V}$; then one can extract a subsequence $\psi_{n_{k}}$ such that the graph of $\psi_{n_{k}}$ in $\mathbb{P}^{1} \times X$ converges to the connected union of the graph of $\psi_{0} \in W_{\eta, J, \nu}^{V}$, and of a vertical components $t_{i} \times C_{i}$, where $t_{i} \in \mathbb{P}^{1}$ and $C_{i} \subset U$ is holomorphic.

Necessarily C_{i} must be equal to $\mathbb{P}^{1} \subset X$ since its class may take only finitely values, and we may assume that there is no rational curve in V having one of these classes, excepted for \mathbb{P}^{1}. So we must have $\eta=l A, l \leqslant k$ and the "limit" ψ_{0} corresponds to $\left(C_{0}\right) \in V_{l}\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right) \subset M_{l}^{0}$. Now assume that there is a six dimensional family of limit graphs consisting of reducible curves; this would imply that for some $l<k$, there is an open set K of $V_{l}\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$ such that for $(C) \in K$, the corresponding map $\psi: \mathbb{P}^{1} \rightarrow V$ meets \mathbb{P}^{1}; writing $\psi=\left(\psi_{C}, \psi_{1}, \psi_{2}\right)$ as above, this means that $\left(\psi_{1}, \psi_{2}\right)$ vanishes at some point $t \in C$. But then, since by definition $\bar{\partial} \psi_{i}=\left(\operatorname{Id} \times \psi_{C}\right)^{*} \sigma_{i}$ we would have $\left(\operatorname{Id} \times \psi_{C}\right)^{*}\left(\sigma_{1}, \sigma_{2}\right)=0$ in $H^{1}\left(C, \psi_{C}^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \psi_{C}^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)\right)(-t)\right)\right.$, and by Lemma 3.4 the curve $C \cup t \times \mathbb{P}^{1}$ would be in the zero set of the section $\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$ on M_{l+1}. (Notice that by the Proposition 3.3, $\left(s_{\sigma_{1}}, s_{\sigma_{2}}\right)$ is continuous at reduced curves of $\left.M_{l+1}\right)$. On the other hand, $C \cup t \times \mathbb{P}^{1}$ belongs to the stratum $M_{l+1}^{(1,0, \ldots, 0)}$ of M_{l+1}, and we have proved that for general $\left(\sigma_{1}, \sigma_{2}\right)$ the intersection $\bar{V}_{\sigma_{1}, \sigma_{2}} \cap M_{l+1}^{(1,0, \ldots, 0)}$ is at most four dimensional, which contradicts the fact that it would contain a 6 dimensional subvariety of M_{l+1}.

So we have proved the Theorem 1.1 for embedded rigid $\mathbb{P}^{1} \subset X$. It remains to see what happens if $\mathbb{P}^{1} \xrightarrow{j} X$ is only an immersion: but we can replace X by a neighbourhood V of \mathbb{P}^{1} in its normal bundle, with the complex structure induced by an exponential map $V \rightarrow X$, which is a local diffeomorphism. The only thing that we have to verify is that we can choose the parameter ν on $\mathbb{P}^{1} \times V$, of the form $\left((\operatorname{Id} \times \pi)^{*}\left(\sigma_{1}\right),(\operatorname{Id} \times \pi)^{*}\left(\sigma_{2}\right)\right)$, as in section 2, satisfying the transversality conclusion of the Proposition 3.6, and coming from $\mathbb{P}^{1} \times X$: but it suffices to choose σ_{i} on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ vanishing over $p r_{2}^{-1}\left(U_{p}\right)$ for an adequate (small) neighbourhood U_{p} in \mathbb{P}^{1} of any $p \in \mathbb{P}^{1}$ such that $j^{-1}(j(p)) \neq\{p\}$. It is not difficult to show that the conclusion of the Proposition 3.6 still holds for a general couple (σ_{1}, σ_{2}) satisfying such a vanishing assumption.

References

1. Aspinwall, P. S. and Morrison, D. R.: Topological field theory and rational curves, Comm. in Math. Phys., vol. 151 (1993), 245-262.
2. Audin, M. and Lafontaine, J. (eds): Holomorphic curves in symplectic geometry, Progress in Math. 117, Birkhaüser, 1994.
3. Candelas, P., De la Ossa, X. C., Green, P. S. and Parkes, L.: A pair of Calabi-Yau manifolds as an exactly soluble superconformal field theory, Nucl. Phys. B359 (1991), 21-74.
4. Gromov, M.: Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307347.
5. Kontsevich, M.: Enumeration of rational curves via torus action, In: Proceedings of the conference 'The moduli space of curves', Eds Dijgraaf, Faber, Van der Geer, Birkhaüser, 1995.
6. Kontsevich, M.: Homological algebra of mirror symmetry, In: Proceedings of the International Congress of Mathematicians, Zurich, 1994, Birkhaüser, 1995.
7. Kontsevich, M. and Manin, Yu.: Gromov-Witten classes, quantum cohomology and enumerative geometry, Communications in Math. Physics, vol. 164 (1994), 525-562.
8. Laufer, H. B.: On $\mathbb{C P}^{1}$ as an exceptional set, in Recent progress in several complex variables, 261-275, Princeton University Press, 1981.
9. McDuff, D. and Salamon, D.: J-holomorphic curves and quantum cohomology, University Lecture Series, vol. 6, AMS, 1994.
10. Manin, Yu.: Generating functions in Algebraic Geometry and Sums over Trees, MPI preprint 94-66, Proceedings of the conference 'The moduli space of curves', Eds Dijgraaf, Faber, Van der Geer, Birkhaüser, 1995.
11. Morrison, D.: Mirror symmetry and rational curves on quintic threefolds, Journal of the AMS, vol. 6 (1), 223-241.
12. Ruan, Y. and Tian, G.: A mathematical theory of quantum cohomology, preprint 1994.
13. Vafa, C.: Topological mirrors and quantum rings, in [16].
14. Voisin, C.: Symétrie miroir, Panoramas et Synthèses, n° 2, 1996, Societé Mathematique de France.
15. Witten, E.: Mirror manifolds and topological field theory, in [16], 120-158.
16. Yau, S. T. (ed.): Essays on mirror manifolds, International Press, Hong Kong, 1992.

[^0]: * Author partially supported by the project 'Algebraic Geometry in Europe' (AGE), Contract CHRXCT-940557

