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Abstract. We give a rigorous proof of Aspinwall-Morrison formula, which expresses the cubic
derivatives of the Gromov-Witten as a series depending only on the number of rational curves in each
homology class, for a Calabi-Yau threefold with only rigid immersed rational curves.
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1. Introduction

Let X be a Calabi-Yau variety of dimension three, and let (

morphic immersion: the normal bundle splits into the direct

a + b = -2. We will assume that O(IPI) is infinitesimally rigid, that is NO has no
holomorphic section, or equivalently a = b = -1. In this case, for any holomor-
phic map q§: pl -+ pl of degree k, the deformations of the map 0 0 1/; consist of
maps 0 o 1/;’, where 1/;’: pl e ]Pl is a deformation of 1/;. It follows by compactness
of the Chow variety of curves in X of bounded degree, or by [4], that for any
a E HZ(X, Z ) , there is a neighbourhood V of IP in X such that the only rational
curves of class a such that ece  keA are supported on O(IP’), where the degree
is counted with respect to any ample line bundle on X, and
Now consider a small general perturbation JE of the pseudocomplex structure J

on pl x X, where 0°,1 1 denotes complex (0, 1) -forms, and T1,0 denotes vector fieldsX,
of type ( 1, 0) for the pseudocomplex structure Je. Then it is known (cf. [4], [9],
[ 12] ) that the space WkA,J,,, of solutions to the equation

for e: Pl e X such that V;* ([rI]) = kA, is smooth, naturally oriented of dimension
six and can be compactified with a boundary of dimension $ 4. By compactness,
for ( JE, v) close enough to (J, 0), and for V as above the subspace WkVA@j ,@, of

* Author partially supported by the project ’Algebraic Geometry in Europe’ (AGE), Contract
CHRXCT-940557
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WkA,J,,, consisting of mapso whose image is contained in V is a component (non
necessarily connected) of WkA,j,,,.

Let XI, x2, X3 be three distinct points of PB and consider the evaluation map

Again the image of ev is six dimensional oriented, and can be compactified with
a boundary of dimension 5 4, so has a homology class in H6 (X 3 ) (which in fact

paper gives a proof of the following
THEOREM 1.1 This class is equal to A x A x A E H6 (X 3).

In [10], Manin already proved this statement, admitting the possibility to apply
Bott formula to stacks ( which may be only a formal point to verify) and using
some ideas due to Kontsevich ([5]). It may be nevertheless interesting to have a
proof close to Aspinwall and Morrison argument ([1]), and justifying a posteriori
their computation.

This theorem is, as in the paper by Aspinwall and Morrison [ 1 ], a consequence
of a more precise statement, namely that as a space of curves in IP’ 1 x X, the

Poincaré dual to the top Chem class of the bundle with fiber at 0: IPI --+ IPI, the
space Hl((cp o ’l/J)*Tx). Here we view Mk as a compactification of the space Mko
parametrizing degree coverings ’l/J: IP’ -+ IP’, and we identify it to a set of curves
in IPI 1 x X, via 0. This statement is quite natural, since this vector bundle, at least
on Mf, is exactly the excess bundle for the too large family of holomorphic curves
Mk. However, the proof shows that one has to be careful with the singular curves
in IPI x X parametrized by Mk - Mf, and especially with non reduced curves: for
a special choice of v (and for JE = J) we will exhibit a section s of this bundle
on Mf C Mk such that Wv identifies naturally to the zero set of s. However,
this section is not even continuous at non reduced curves in Mk. The result is that,
nevertheless, the closure of the zero locus of s in Mk has for homology class the
Poincaré dual of the top Chem class of this bundle.
We mention at this point an essential difference between Manin’s computa-

tion [10] and ours: Manin works with the moduli space of stable maps to get a

complicated, but more satisfactory from the point of view of moduli spaces, com-
pactification of the space of smooth ramified covers of IP’. As in [ 1 ] , we work with
the naive compactification Mk - lp2k+ 1 on which the Chem classes computations
are quite easy, but which is not a good moduli space at the boundary.

The Theorem 1.1 is one version of Aspinwall-Morrison formula [ 1 ], which we
now explain: let W e H2 (X, Z ) such that Re w a is a sufficiently large kahler
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class on X. The Gromov-Witten potential is the function on Heven (X) defined by
the series (expected to be convergent for large a)

([7], [13]) where the mixed Gromov-Witten invariants

are defined as follows: for (J, v) generic, J a pseudocomplex structure, v a section
, consider the evaluation

map

the points xi being fixed on ]Pl. Then Im eVk-3 is as before oriented, smooth of real
dimension 6 + 2(k - 3), and can be compactified with a boundary of codimension
two, so defines a homology class in Xk on which one can integrate rlok@ which

because the map evk-3 has positive dimensional fibers, at least when v = 0, and

constant maps, and ev(WA,j,(» is then simply the diagonal in X 3 .
Now assume that all generically immersed rational curves in X are immersed

and infinitesimally rigid, and let n (A) be the number of immersed rational curves
of class A 54 0. Then all rational curves on X are multiple covers of immersed
infinitesimally rigid curves, and we can apply the Theorem 1.1, which says that

is made of n(A) components whose contribution to
1 is equal to

It follows that
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modulo a quadratic term in q. So if we consider the cubic derivatives

Heven(x), we find

which is Aspinwall-Morrison formula for the Yukawa couplings of the ’A-model’
of X, at the point w - 77 (see [ 1 ], [15], [3 ],[12]).

2. Choice of the Parameter v

We will assume in this section that 0: IP’ ---&#x3E; X is an embedding, and consider the
general case in Section 4. We will use the following result ([8])

THEOREM 2.1.

Since the Theorem 1.1 is a local statement, we may assume from now on that

we get an inclusion

as the vertical tangent space of 7r (Tw is the bundle of (1,0)-vector fields on W).
We choose now two Coo sections 

We study now the solutions to the équation

for 0 : ]Pl e W a C°° map such that 0,, ([IP’]) = kA, where A is the homology
class of the zero section. Since by construction 7r, (p) vanishes as a section of
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, so 7r o ip is holomorphic,

The équation (2.9) rewrites then simply as

Since. are determined by 1jJ’ and exist if and only
vanish in

As in [1], let us mtroduce j J

a smooth curve in Q, isomorphic to rI by the first projection, and of degree k over
IP’ by the second projection.

In Mk x Q we consider as in [1] the universal divisor D defined as the zero set of

associated to

that

Let Mk be the open set parametrizing smooth curves in Q, that is maps 0’:

is expected to be of real dimension 6, as we want.

3. Study of the Section sa

The behaviour of the section-s, of E on .
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LEMMA 3 .1.

Proof. By definition, for is represented by a (0, 1 )-form on
C, which varies in a C°° way with (C). Now, we have the isomorphism.

shown that the rank of this space is independant of (C). This implies that sa is of

for a holomorphic section ri of the right hand side, the function (sa, q) is given by
integrals over the curves C of forms varying in a C°° way with (C).

It is unfortunately not true that Sa extends continuously over Mk. The rest of
this section is devoted to the study of the singularities of sa and to the proof of the
following
THEOREM 3.2. Let al, a2 be general Coo section ofpr’,

subvarieties of dimension :
which is Poincaré dual to the top Chern class of E x E.

The proof of this theorem will be based on the following Proposition 3.3, for
which we introduce a few notations: for any (C) E Mk, one can write C = C’U Vc,

that we will view as a divisor either on C’or on

coordinates on P1. 
We have already used the isomorphism

which depends essentially on the choice of an isomorphism
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where 7r M, 7r]pl are the projections of Mk x pl onto its factors. We have then the
following
PROPOSITION 3.3. Let 0 be a holomorphic section of.

Proof. Let

assume that is compactly supported in a product of disks .

the inhomogeneous polynomials corresponding 1

where one of the polynomials fc,, 9co does not vanish on DI, since ,
has no vertical component. We assume 9co -# 0 on Di, the other case working

written as

where we can normalize f C by imposing the condition,

described by the equations 1

restriction to U x Di of a section. can then be written as

where

and integrating over C the cup-product of this form with ulc; hence -y«C» has
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the following form

and it suffices to show that each function extends continu-

It suffices to show that r* (Tg) extends continuously at (

For (C) close enough to (Co), the ais are close to zero, so we may assume that
V) (zi, z2) = 0 outside 1 z, - Ail  1. It follows that

But the function 1

bounded by a constant on D j , and the function
one has
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one may apply Lebesgue dominated convergence theorem in order to conclude that

The proof that -y’,extends continuously at (Co) works similarly: in fact, using the
result for it suffices to prove it for

Now we can write

and because e is compactly supported in Dl x D2 the function

is bounded in D1. But i ) so the polynomial

as before we can introduce the cover parametrizing an ordering of the
, and we get
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and we can apply Lebesgue dominated convergence theorem since the integrand is
bounded by Mllzll and converges weakly to the L’ function

outside 0, when (C) tends to (Co). So the proposition is proved.
In fact, the proof of the proposition gives as well the interpretation of the

LEMMA 3.4. There are natural isomorphisms

Proof. Consider the exact sequence of coherent sheaves on Co

It is easy to see that the last sheaf has trivial cohomology, and it follows that

so we are reduced to prove the existence of natural isomorphisms
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which is immediate because we have the fine resolution

where A() , , AO,1 are now the sheaves of C’ sections and of (0,1 ) -forms respec-co co
tively. One gets similarly the second isomorphism.

Now, by the Lemma 3.4, u 1 Ci 0 gives a class su( Co) E HI 1 (Co, pr 2 * (9p Co, 0
ID" ), and this group is naturally a quotient of E(co) H1 1 (CO, pr20pl (-1 ),co).Co 

2

It is immediate to verify that H1 1 (Co, pr* Op i (- 1) 1 C, 0 Iv "co ) identifies to the dual
of HO (Op , (k - 2) OlBeo) C HO ( Op 1 (k - 2» (modulo the choice of a isomorphism
KQ -- OQ (- 2, - 2) and of an equation for Co) and the computation of the limits
in the proof of the Proposition 3.3 shows

LEMMA 3.5. Let 0 be a local holomorphic section of i

Now we can show the following Proposition 3.6, which shows the first part of the
Theorem 3.2 ; for each sequence d. = (dl,"" dk) of integers, with £j idi  k,
we denote by M:’ the smooth locally closed subvariety of Mk consisting of
curves C = C’ U Ve, such that C’ is a smooth member of IOQ(k - £j idi, 1)
and Vc = PTl1 (De) where De has d2 points of multiplicity i for each i. The
M:"s form a stratification of Mk and M2 = MO"",O). On each M:’ , a gives a
section of the bundle E with fiber at C the space HI ( C’ , pT? ( Op 1 ( -1) 0 ID" ),
that we will denote by s§.. As in Lemma 3.1, it is immediate to prove that s§. is of
class Coo on M:.. We have
PROPOSITION 3.6. j

can find a holomorphic subbundle .

Furthermore, by definition of F and by the Lemma 3.5, we have
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and we have the equality in i

Now we have on 
and by continuity we get

Finally, the equality (3.32) gives

which shows the first part of the proposition.
Now note that the real dimension of Md, is equal to 2(2(k - ri idi + 1) - 1 +

Ei di), and the rank overR of Ed. x Ed. is equal to 4(k - 1 - Ei (i - 1)di). Since

sd.. are of class C°° over Md. the fact that V(Sd. s d. ) is smooth of real dimension
6 - 2(Ei di ) for general 0’l, 0’2 follows from the following
LEMMA 3.7. There exists a finite number of COO sections ui of pr:

for any sequence d..
Proof. Since Mk is compact, it suffices to check it locally on Mk. Now let

(C) e Mk ; for o, supported away from Sing C, one shows exactly as in 3.1 that
Sa extends as C°° section of E at (C). Next, using Lemma 3.4, one checks easily
that the values at (C) of such sections s, generate the fiber E( c). So they generate
E in a neighbourhood U of (C) and its quotients .

It follows from this proposition that for general (

coming from the complex structure on Mk and E x E. Now we have

PROPOSITION 3.8. [V Ul,U2] is Poincaré dual to the top Chern class of E x E.
Proof. We show first the existence of a continuous section (si, s2 ) of E x E

with zero locus equal to Ud. V (( S.1 ’ s) ): consider the coherent subsheaf (E* )’ =
R°7r M * (7r;1 Opl (k- 2) 0IB) 00 Mk (1) c E* ; let F be a holomorphic vector bundle
on Mk such that there exists a surjective morphism q/: F -+ (E* )’. We denote by cjJ
the composition of p’ with the inclusion (E*)’ c E*. Putting hermitian metrics on
F and E*, we construct a C°° complex linear endomorphism $ = pot p: E* -+ E*,
which has the property: V(C) E Mk, Imcp(c) = ImcjJ(c) = HO(Op1(k - 2) Q9
IBe) 00Mk (1 )(c). Also, by construction, for any C°° section T of E*, CP(P) can be
written locally as £; fjTj where fj are C°° complex functions and Tj are sections of
(E*)’. It follows from the Proposition 3.3 that for any such T, the function (su, r)
is continuous on Mk, which means that s’ = O* (sa) is a continuous section of
E. Furthermore, for (C) e Mf" , s’ vanishes at (C) if and only if sy vanishes at
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(C), by Lemma 3.5. Applying this construction to the couple (al, a2) we get a
continuous section (s 1, s2 ) of E x E which vanishes exactly on Ud. V ( ( S.I ’ s§j ) .

Notice that (s[ , s[) is smooth when (SUI’ S(2) is, so (s[, s[) is smooth on

MZ; furthermore, since the map q&#x3E;* is C-linear the orientation of V(SUI’ S(2)
corresponding to the section (si, s2) coincides with the one given by the section
(SUI’ S(2)’

Now, using approximation by smooth sections, we can construct a C°° sec-
tion (sl’, s]) of E x E, which is equal to (s 1, s2 ) outside an arbitrarily small
neighbourhood of Mk - MZ, and such that the zero locus V(s%’, s]) is con-
tained in the union of V(SU1’ S(2) and of an arbitrarily small neighbourhood
of Ud.f(o...,O) V((S.l’ s)). Using the fact that dim v((s§j , s§j)) 5 4 for d. -#
(0, ... , 0), by Proposition 3.6, any homology class of dimension 2dimMk - 6
can be represented by a subvariety W of Mk which does not meet a small neigh-
bourhood of Ud.f(o...,O) V( (S.l’ s)). So W may be choosen to meet V(SU1’ S(2)
transversally and only in the open set where (SUI’ S(2) and (s1, sq) coincide, and
then the intersection number W . V U1,(12 = W . V(s1, s] ) is simply the top Chem
class of E x E evaluated on W, which proves the Proposition 3.8, hence also the
Theorem 3.2.

4. Proof of the Theorem 1.1

The homology class that we want to compute is defined as follows: let (JE, v) be
a small general deformation of (J,0), where J is the original complex structure;
there is a component W0t,JE,v of WkA,JE,lI made of curves contained in a given
small neighbourhood V of JI» C X (cf. Introduction); one can construct a compact-
ification WkA,J.,y of W0t,J.,y, such that the points of the boundary parametrize
curves in JI» x X, which are limits of graphs of functions uli e W 0t,JE ,lI’ One has
then a family of curves 

which induces the family of threefolds
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The class that we want to compute is the class of for

component of
a neighbourhood of the zero section of the bundle 

Since we know that V U1 ,U2 C Mk has for homology class the Poincaré dual of the
top Chem class of E xE, with E £É O §§  Q9 OMk (1), we find as in [1] that [V Ul,U2]
is the homology class of a I3 C Mk £É JP&#x3E;2k+l. It is then immediate to conclude that

(7r 0 P3) ((p-1 ((Xl, X2, X3) )]) is equal to the fundamental homology class of JP&#x3E;13.
In order to complete the proof of the Theorem 1.1, it remains to verify that the

computation of the class of p] ( (p] ) ((XI, X2, X3))) (for generic JE, v) can be done
using V (SUI’ S(2)’ that is we have to verify the following points
LEMMA 4.1. WA , J , v is smooth along V (SUl’ S(2)’ for v as in Section 2 and
generic ai. 
In other words we have to identify ’schematically’ W0t , J , 1/ and V (SUI’ S(2)’
LEMMA 4.2. The orientation of V (s,,, SU2) as the zero set of a section of a complex
vector bundle on Mk coincide with the natural orientation of Wv @j, (defined in
[9], Chapter 3). 

LEMMA 4.3. For (Jn, vn ) a sequence of generic deformations of (J, 0) converging

(That is we have to exclude the existence of a limit component which would be
made of curves in pl x X with a vertical component).

Proof of Lemma 4.1. We want to show that for (C) E V (s,j) S(2) defining 1/;( C) :
]Pl --&#x3E; ]Pl such that (Id x O(C» * «0’1, 0’2) = (DO 1, D02), Oi C Coo (1/;( C) (Op! ( -1)),
and ’ljJ: IP’ -&#x3E; V, 0 = (e(C), 01, 02), where V is identified to an open set of Nç as
in Section 2, the tangent space at (C) of V (sa , S(2) and at 1/; of W 0t J v coincide.
But the last space is the kemel of the linearized équation 
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The bundle Tx j v fits into the exact sequence

and is holomorphic, it is

immediate to verify that is simply the 8 operator, and

that the induced quotient map

we get an exact sequence

and identifying the second term to TMk (c) and the last term to .
, it is immediate to verify that 03B2 is equal to the linearization

, which proves Lemma 4.1.

Proof of Lemma 4.2. The orientation of the variety
corresponding to (C) is described as follows (cf. [9]): Replacing C°° sections of

1 by sections with L derivatives up to order k, the
operator De gives a Fredholm operator (surjective at a smooth point)

The observation is that both spaces have natural (continuous) complex structures
and that the C-antilinear part of Dp is of order 0, hence is compact. So there
is a natural (linear) homotopy from De to its C-linear part DL in the space of

Now as mentioned above, the operator De induces the complex linear operators

and
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So its complex linear part satisfies the same property, as do all the operators Dt. It
follows that for each t we have an exact sequence

hence a canonical isomorphism

which is easily seen to be continuous. The right hand side has a natural orientation
coming from the complex structure on Ker a and Coker 8. But for t = 1, the
exact sequence (4.44) is an exact sequence of complex vector spaces and complex
linear maps, so the isomorphism (4.45) for t = 1 is compatible with the complex
orientation. On the other hand, for t = 0, the isomorphism (4.45) induces on the
left hand side (which is equal to A" Twv J at e) the orientation of V(SUl’ SUI)’
given by the complex structure on Mk and the complex structure on E x E. So
Lemma 4.2 is proved.

Proof of Lemma 4.3. We use the following version of the compacity theorem
(cf. [4], [12])

THEOREM 4.4. Assume (Jn, vn) converges to (J, v) and let lbn E W0t,Jn,vn; then
one can extract a subsequence ’l/Jnk such that the graph Of V)nk in!pl x X converges
to the connected union of the graph of’l/Jo E WJ:J,v, and of a vertical components
t2 x CZ, where ti E !pl and Ci C U is holomorphic.

Necessarily Ci must be equal to IP’ C X since its class may take only finitely
values, and we may assume that there is no rational curve in V having one of
these classes, excepted for IP’. So we must have ri = lA, l  k and the "limit"
eo corresponds to (Co) E Vi (s,,, s,,) C M°. Now assume that there is a six
dimensional family of limit graphs consisting of reducible curves; this would
imply that for some 1  k, there is an open set K of Vl(S(11’ S(12) such that for
(C) e K, the corresponding map e: IP’ e V meets IP’; writing e == (eC, el, ’l/J2)
as above, this means that (’l/JI, ’l/J2) vanishes at some point t E C. But then, since
by definition aei = (Id x ’l/Jc) * ai we would have (Id x ’l/;c) * ( al , a2) = 0 in
H 1 (C, e * (Op, (- 1) ED e * (Op, (- 1» (- t», and by Lemma 3.4 the curve C U t x IP
would be in the zero set of the section (Si 1 812) on Ml+,. (Notice that by the
Proposition 3.3, (S(11’ S’2) is continuous at reduced curves of ML+1 ). On the other
hand, C U t x ]Pl belongs to the stratum M("O’ .... 0) of Ml+,, and we have proved that
for general (cri, o-2) the intersection V n 1+1 is at most four dimensional,
which contradicts the fact that it would contain a 6 dimensional subvariety of Ml+ 1 .
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So we have proved the Theorem 1.1 for embedded rigid pl C X. It remains to
see what happens if pl X is only an immersion: but we can replace X by a
neighbourhood V of pl in its normal bundle, with the complex structure induced
by an exponential map V -3 X, which is a local diffeomorphism. The only thing
that we have to verify is that we can choose the parameter v on pl x V, of the
form ((Id x 7r)’(oj), (Id x 7r)*(U2», as in section 2, satisfying the transversality
conclusion of the Proposition 3.6, and coming from pl x X : but it suffices to choose
ai on pl x pl vanishing over pr2 1 (UP) for an adequate (small) neighbourhood Up
in pl of any p E IP such that j-l (j (p)) -# {p}. It is not difficult to show that the
conclusion of the Proposition 3.6 still holds for a general couple (Ol, a2) satisfying
such a vanishing assumption.
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