On dynamic feedback linearization of four-dimensional affine control systems with two inputs
ESAIM: Control, Optimisation and Calculus of Variations, Volume 2  (1997), p. 151-230
@article{COCV_1997__2__151_0,
     author = {Pomet, Jean-Baptiste},
     title = {On dynamic feedback linearization of four-dimensional affine control systems with two inputs},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {2},
     year = {1997},
     pages = {151-230},
     zbl = {0898.93007},
     mrnumber = {1454927},
     language = {en},
     url = {http://www.numdam.org/item/COCV_1997__2__151_0}
}
Pomet, Jean-Baptiste. On dynamic feedback linearization of four-dimensional affine control systems with two inputs. ESAIM: Control, Optimisation and Calculus of Variations, Volume 2 (1997) , pp. 151-230. http://www.numdam.org/item/COCV_1997__2__151_0/

[1] E. Aranda-Bricaire, C.H. Moog, J.-B. Pomet: An infinitesimal brunovsky form for nonlinear systems with applications to dynamic linearization, in Geometry in Nonlinear Control and Differential Inclusions, B. Jakuczyk, W. Respondek, and T. Rzezuchowski, eds., Banach Center Publications, 32, Warsaw, Poland, 1995, Institute of Mathematics, Polish Academy of Sciences, 19-33. | MR 1364417 | Zbl 0844.93024

[2] E. Aranda-Bricaire, C.H. Moog, J.-B. Pomet: A linear algebraic framework for dynamic feedback linearization, IEEE Trans. Automat. Control, 40, 1995, 127-132. | MR 1344331 | Zbl 0844.93025

[3] B. Bonnard: Feedback equivalence for nonlinear systems and the time-optimal control problem, SIAM J. on Control and Optim., 29, 1991, 1300-1321. | MR 1132184 | Zbl 0744.93033

[4] R.W. Brockett: Feedback invariants for nonlinear systems, in IFAC World Congress, Helsinki, 1978, Birkäuser. | Zbl 0457.93028

[5] P. Brunovský: A classification of linear controllable systems, Kybernetica, 6, 1970, 176-188. | MR 284247 | Zbl 0199.48202

[6] R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmitt, P.A. Griffiths: Exterior Differential Systems, Mathematical Sciences Research Institute Publications 18, Springer-Verlag, 1991. | MR 714337 | Zbl 0726.58002

[7] B. Charlet, J. Lévine, R. Marino: Sufficient conditions for dynamic state feedback linearization, SIAM J. on Control and Optim., 29, 1991, 38-57. | MR 1088218 | Zbl 0739.93021

[8] M. Fliess, J. Lévine, P. Martin, P. Rouchon: On differentially flat nonlinear systems, in Nonlinear Control Systems Design, M. Fliess, ed., Pergamon Press, 1992, 408-412. | MR 1181303

[9] M. Fliess, J. Lévine, P. Martin, P. Rouchon: Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund, C. R. Acad. Sci., Paris, Série I, 317, 1993, 981-986. | MR 1249373 | Zbl 0796.93042

[10] M. Fliess, J. Lévine, P. Martin, P. Rouchon: Towards a new differential geometric setting in nonlinear control, in Proc. International Geometrical Coll., Moscow, 1993.

[11] M. Fliess, J. Lévine, P. Martin, P. Rouchon: Flatness and defect of nonlinear systems: Introductory theory and examples, Int. J. Control, 61, 1995, 1327-1361. | MR 1613557 | Zbl 0838.93022

[12] L.R. Hunt, R. Su, G. Meyer: Design for multi-input nonlinear systems, in Differential Geometric Control Theory, R. Brockett, ed., Birkhäuser, 1983, 258-298. | MR 708508 | Zbl 0543.93026

[13] B. Jakubczyk: Equivalence and invariants of nonlinear control systems, in Nonlinear Controllability and Optimal Control, H.J. Sussmann, ed., Marcel Dekker, New-York, 1990. | MR 1061386 | Zbl 0712.93027

[14] B. Jakubczyk: Dynamic feedback equivalence of nonlinear control systems. Preprint, 1994.

[15] B. Jakubczyk, W. Respondek: On linearization of control systems, Bull. Acad. Polonaise Sci. Ser. Sci. Math., 28, 1980, 517-522. | MR 629027 | Zbl 0489.93023

[16] C. Leleu, J.-B. Pomet: A package in "maple" to decide on (x, u)-dynamic linearizability of control systems with four states and two inputs, rapport de recherche, INRIA, 1997, to appear. (URL: http://www.inria.fr/publications-eng.html).

[17] J. Lévine, R. Marino: On dynamic feedback linearization on ℝ, in 29th IEEE Conf. on Decision & Control, 1990, 2088-2090.

[18] P. Martin: Contribution à l'étude des systèmes différentiellement plats, PhD thesis, L'École Nationale Supérieure des Mines de Paris, 1992.

[19] J.-B. Pomet: A differential geometric setting for dynamic equivalence and dynamic linearization, in Geometry in Nonlinear Control and Differential Inclusions, B. Jakuczyk, W. Respondek, T. Rzezuchowski, eds., Banach Center Publications 32, Warsaw, Poland, 1995, Institute of Mathematics, Polish Academy of Sciences, 319-339 | MR 1364437 | Zbl 0838.93019

[20] J.-B. Pomet, C. H. Moog, E. Aranda-Bricaire: A non-exact Brunovsky form and dynamic feedback linearization, in 31st IEEE Conf. on Decision and Control, Tucson, U.S.A., Dec. 1992, 2012-2017.

[21] J.-F. Pommaret: Partial Differential Equations and Group Theory, Mathematics and its Applications 293, Kluwer Academic Publishers, Dordrecht, Boston, London, 1994. | MR 1308976 | Zbl 0808.35002

[22] P. Rouchon: Necessary condition and genericity of dynamic feedback linearization, Journal of Mathematical Systems, Estimation, and Control, 4, 1994, 1-14. | MR 1646298 | Zbl 0818.93012

[23] W. Shadwick: Absolute equivalence and dynamic feedback linearization, Systems & Control Lett., 15, 1990, 35-39. | MR 1065346 | Zbl 0704.93037

[24] W. Sluis: A necessary condition for dynamic feedback linearization, Systems & Control Lett., 21, 1993, 277-283. | MR 1241406 | Zbl 0793.93070

[25] S. Sternberg: Lectures on Differential Geometry, Chelsea Publishing Co., New York, 2nd ed., 1983. | MR 891190 | Zbl 0518.53001