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AN EXTENSION OF THE AUXILIARY PROBLEM

PRINCIPLE TO NONSYMMETRIC AUXILIARY

OPERATORS

A� RENAUD AND G� COHEN

Abstract� To �nd a zero of a maximal monotone operator� an exten�
sion of the Auxiliary Problem Principle to nonsymmetric auxiliary oper�
ators is proposed� The main convergence result supposes a relationship
between the main operator and the nonsymmetric component of the aux�
iliary operator� When applied to the particular case of convex�concave
functions� this result implies the convergence of the parallel version of
the Arrow�Hurwicz algorithm under the assumptions of Lipschitz and
partial Dunn properties of the main operator� The latter is systemati�
cally enforced by partial regularization�

In the strongly monotone case� it is shown that the convergence is
linear in the average� Moreover� if the symmetric part of the auxiliary
operator is linear� the Lipschitz property of the inverse su�ces to ensure
a linear convergence rate in the average�

�� Introduction

Given a maximal monotone operator � over a Hilbert space X � which
may be multivalued �that is� ��x� may be a subset of X rather than a single
point�� consider the problem of �nding a zero of � �that is� a point x� � X
such that � � ��x���� This paper is devoted to studying the following general
algorithmic scheme to solve this problem	 at stage k
�� knowing xk� obtain
xk�� by solving another zero��nding problem� namely�

� �
�
�

�

�

�xk���� 
�xk�

�

��xk���

�
�����

where

� 
 is a single�valued auxiliary �that is� user chosen� operator which may
be nonsymmetric �i�e� is not necessarily the derivative of a mapping��

� � is a positive scalar �again user chosen� playing the role of a stepsize
as in a gradient algorithm �which� by the way� can be cast in the
framework of �������

This scheme appears to be a generalization of the proximal algorithm �see
����� introduced by Martinet ���� and extended by Rockafellar ���� to max�
imal monotone operators �in these works� 
 is simply the identity�� When
choosing a symmetric auxiliary operator �i�e� when 
 is the derivative K�
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��� A� RENAUD AND G� COHEN

of a real�valued mapping K�� Algorithm ����� yields the general form of the
proximal algorithm obtained by using Bregman functions ���� This algorithm
has been studied by Censor and Zenios ��� and by Chen and Teboulle ��� in
the symmetric case � when � is the subdi�erential of a convex function�
Eckstein ���� also considered this type of algorithm in the general case and
applied it to decomposition�
Algorithm ����� may also be considered as a generalization to nonsymmet�

ric auxiliary operators of the Auxiliary Problem Principle �APP� introduced
by Cohen ����� ����� In the symmetric case� for example� to solve

min
x�Xad

J�x� �����

where J � J�
J�� with J� di�erentiable� over the closed convex subset X
ad�

this principle proposes the general form of algorithm	 knowing xk� derive
xk�� from the resolution of

min
x�Xad

�
�

�

�
K�x��

D
K ��xk�� x

E�


D
J ���x

k�� x
E

 J��x�

�
�����

where K is a real�valued strongly convex function� For the auxiliary opera�
tor 
 � K�� �J ��� Algorithm ����� applied to the subdi�erential of J 
 IXad �
where IXad is the indicator function of Xad� yields Algorithm ������ For
K 	 x �� �����kxk� and J � J�� this algorithm turns out to be an explicit
gradient algorithm with projection onXad� For J reduced to J�� it is nothing
else but a proximal algorithm ����� or otherwise stated� an implicit gradi�
ent algorithm� This principle thus proposes a form of continuum between
proximal and gradient algorithms� Provided that K is strongly convex with
constant b� if J �� is L�Lipschitz continuous and if J� and J� are convex l�s�c��
the convergence of this type algorithm has been proved by Cohen ��� for
� � � � �b�L� The assumptions upon J� are strongly related to those which
ensure the convergence of the explicit gradient algorithm� those upon J�
are akin to the assumptions which ensures the convergence of the proximal
algorithm�
This partial linearization framework has a particular interest to build up

decomposition algorithms �see ����� Assume that X � �h�HXh where H is
a �nite set� If Xad � �h�HX

ad
h and if J� is additive with respect to this

decomposition� then Problem ����� splits up into independent subproblems
provided that the auxiliary function K be chosen additive� �Large step�
decomposition algorithms� may thus be obtained even if the whole func�
tion is nondi�erentiable provided that the linearized part J� has a Lipschitz
derivative�
Extensions of the APP to variational inequalities have been proposed by

Cohen ��� and Mataoui ����� Considering the problem of �nding an x� such

�The expression �large step� refers to the fact that the stepsize � in ����� is kept away
from � asymptotically� that is when the iteration index k goes to in�nity� this is more
important than the fact that � is kept constant or that it is made dependent on k� �large
steps� should be opposed to �small steps�� an expression which refers to algorithms in
which �

k must tend to � asymptotically� as encountered for example in some subgradient
algorithms�
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AUXILIARY PROBLEM PRINCIPLE ���

that

x� � X� �x � Xad�
�
���x

��� x� x�
� � �� �����

where �� is a monotone and Lipschitz continuous operator� Cohen ��� has
shown that the algorithm	 knowing xk� derive xk�� from the resolution of

min
x�Xad

�
�

�

�
K�x�� �

K��xk�� x� xk
��


�
���x

k�� x� xk
��

�����

constructs a sequence fxkg which strongly converges towards a solution
of ����� under the assumption that �� is strongly monotone� Mataoui ����
has extended this result� showing the weak convergence by only assuming
what he has called the Dunn property of ��� Several other names for this
property �or very similar properties� can be found in the literature	 co�
coercivity ����� �rm nonexpansiveness ������������ The Dunn property is
nothing else but the strong monotonicity of the inverse� Mataoui ���� shows
that it can be enforced by Yosida regularization�
Algorithm ����� can also be derived from ������ For � � ��J 
 IXad �
��

and 
 � K������ Algorithm ����� yields ������ More generally� to �nd a zero
of an operator � � �� 
��� by choosing 
 � K� � ��� in Algorithm ������
one obtains

� �
�
�

�

�
K ��xk����K ��xk�

�

 ���x

k� 
 ���x
k���

�
� �����

This partial relaxation algorithm can also be cast into the APP framework
and can be used to derive decomposition algorithms�
Notice that when K� � I �I denotes identity�� Algorithm ����� takes the

form

xk�� � �I 
 ����
�� �I � ���� �x

k�� �����

The weak convergence of this �splitting algorithm� �proposed by Lions and
Mercier ������ has been proved by Gabay ���� for �� monotone when ��

enjoys the Dunn property �see also ������ Besides� in parallel with our work�
Zhu and Marcotte have shown the weak convergence of Algorithm �����
under the same assumptions upon �� and ���
The work of Patriksson ���� in this �eld must also be mentioned� He

proposes a framework which introduces nonsymmetric auxiliary operators
and which� in a way� may be considered as being more general than ������
The possibility of performing a linear search is for example considered� For
this reason� the formalism ����� cannot be considered as being particularly
original�
The main contribution of this paper is to be found in the type of assump�

tions to ensure convergence and in the results regarding the convergence
rate� It is shown that it is the relationship between the auxiliary operator

 and the main operator �� rather than the individual properties of each
operator� which plays the central role �see Theorem ����� In particular� for
the case of the �splitting� algorithm ������ convergence does not directly
follows from the properties of �� but from a relationship between �� and
the whole operator �	 the Dunn property� or even the monotonicity of ���
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��� A� RENAUD AND G� COHEN

is not required to prove convergence� Moreover� even if �� � � and �� � ��
the convergence of ������ which boils down to

xk�� � xk � ���xk� �����

may be ensured without the Dunn property provided that � has a spe�
ci�c structure� This type of situation occurs in particular when � is the
operator associated with a convex�concave function �x����� In this case� Al�
gorithm ����� is the parallel version of the Arrow�Hurwicz algorithm� In
the Lipschitz continuous case� from the general convergence result� the con�
vergence of this Arrow�Hurwicz algorithm is derived under the assumption
that a �partial Dunn property� is satis�ed �see De�nition ����� This prop�
erty can be enforced by a partial regularization �see De�nition ����� In the
particular case when the convex�concave mapping is a Lagrangian� the par�
tial regularization with respect to the dual variables yields an Augmented
Lagrangian� Therefore� the parallel version of the Arrow�Hurwicz algorithm
applied to an Augmented Lagrangian converges in the Lipschitz case� As
far as we know� these results are original�
Our study of the convergence rate of Algorithm ����� shows that the

strong monotonicity of � ensures a �linear in the average� rate of conver�
gence� Moreover� this strong monotonicity assumption can be weakened if
the symmetric part of 
 is linear� Then� the Lipschitz property of the in�
verse yields linear convergence� The result obtained by Luque ���� for the
proximal algorithm is thus generalized�
This paper is structured as follows� After some basic results have been

recalled �x��� the convergence results concerning Algorithm ����� are pro�
posed �x��� In the second part of the paper� some results about partial
regularization �x�� are given and the particular case of saddle points prob�
lems is then studied� The third part �x�� is devoted to the study of the
convergence rate of Algorithm ������

�� Basic results

���� Basic definitions

Let X be a Hilbert space� let h	� 	i denote its scalar product and let k 	 k
be the related norm� Let I be the identity mapping overX and � 	 X � �X

be a point�to�set operator� The operator is single�valued if� for all x� ��x�
is reduced to a point� No distinction will be made in this case between this
point and the singleton ��x��
The operator � is monotone if

�x�� x� � X� ����� ��� � ��x��� ��x�� 	 h�� � ��� x� � x�i � ��
If moreover

x� 
� x� � h�� � ��� x� � x�i 	 ��
then � is strictly monotone� Finally� if there exists a constant a � R�� such
that � � aI is monotone� then � is strongly monotone with constant a�
The domain of � is de�ned as follows

dom� � fx � X j ��x� 
��g �
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AUXILIARY PROBLEM PRINCIPLE ��	

Definition ���� A monotone operator is maximal if its graph cannot be
included in a strictly larger graph of a monotone operator�

Definition ���� A single�valued operator � is hemicontinuous if for all
x�� x� � X � the mapping

�x��x� 	 ��� ��� X� t �� ��tx� 
 ��� t�x�� �����

is continuous in the weak topology�

A monotone operator which is hemicontinuous is necessarily maximal
�see ������

���� Existence of zeros of maximal monotone operators

The point x� � X is a zero of � if � � ��x���
Assumption ���� There exist x � X and 
 	 � such that

�x � X� �� � ��x� 	 fkx� xk 	 
g � fh�� x� xi � �g �
Remark ���� A strongly monotone operator satis�es this assumption and
so does an operator the domain of which is bounded�

Proposition ��� �Ref� ����	� Let � be a maximal monotone operator�
The operator has a zero if and only if it satis�es Assumption ����

���� Sum of maximal operators

Proposition ��
� Let �� 	 X � �X be a maximal monotone operator� Let
�� 	 X � X be a hemicontinuous operator� If � � ��
�� is monotone� it
is maximal monotone�

Proof� One has to prove that� for every x � X and for every � such that

�x� � X� ��� � ��x��� h�� � �� x�� xi � �� �����

then � � ��x�� Let x� � X � t � ��� �� and ���t � ���x 
 t�x� � x��� The
monotonicity of �� and ����� yield�

���� 
�� �x
 t�x� � x��� �� x� � x
�

� h���t 
 �� �x
 t�x� � x��� �� x�� xi
� ��

Since �� is hemicontinuous� when t� �� one obtains

h���� � �� ����x�� � x� � xi � ��
One can complete the proof using the maximality of ���

Remark ���� Proposition ��� does not assume the monotonicity of ��� For
this reason� it does not follow from the classical result on the maximality of
the sum of monotone operators �see ������

Esaim� Cocv� September ����� Vol� 	� pp� 	
���
�



��
 A� RENAUD AND G� COHEN

���� Dunn property

������ Definition�

Definition ��� �Dunn property	� Let A � R�� and � 	 X � X be a
single�valued mapping� � has the Dunn property with constant A� if

�x�� x� � X 	 h��x�����x��� x�� x�i � �

A
k��x��� ��x��k��

This property can also be stated as the strong monotonicity of the �point�
to�set� inverse ��� with constant ��A� Observe that � is then Lipschitz
with constant A �thus the fact that it is single�valued is implied by the
Dunn property itself��
If � is the derivative of a convex function� � has the Dunn property

with constant A if and only if it is A�Lipschitz �see ��� ����� However� in
the nonsymmetric case� this equivalence is not true� The rotation �x� y� ��
��y� x� is Lipschitz but does not enjoy the Dunn property� Nevertheless�
if � is strongly monotone with constant a and Lipschitz with constant L�
Mataoui ���� shows that it enjoys the Dunn property with constant L��a�
The Yosida regularization ���� also enforces the Dunn property �����

Definition ��
 �Regularization	� Let � 	 X � �X be a maximal mono�
tone operator and c 	 �� The operator

�c 	 X � X� x �� �

c
�x� s�x��

where s�x� is such that

� �
�
�

c

�
s�x�� x

�

 �

�
s�x�

��
is the regularization of ��

Proposition ���� �Ref� ����	� The regularization �c of � is monotone
and enjoys the Dunn property with constant ��c�

������ Convergence based on the Dunn property� If �� has the
Dunn property with constant A and if � � � � ��A� Algorithm �����
weakly converges �see ������ Moreover� when K is a strongly convex func�
tion with constant b� the convergence of ����� and ����� has been shown by
Mataoui ���� and Zhu and Marcotte ���� if � � � � �b�A�

�� New convergence results for Algorithm �����

The convergence results which are given in this section are very di�erent
when the operator � is symmetric and when it is not� In the symmetric
case� the Dunn property of the auxiliary operator 
 over every bounded
set su�ces to ensure convergence� If � is not symmetric� assumptions that
relate the geometries of � and 
 have to be made� The proof of these
convergence results can be found in Appendix A�
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AUXILIARY PROBLEM PRINCIPLE ���

���� Symmetric case

Consider the minimization problem ����� where J 	 X � R is a convex
lower semi�continuous �l�s�c�� mapping and Xad is a nonempty closed convex
subset� The subdi�erential of J 
 IXad where IXad is the indicator function
of Xad is a maximal monotone operator �see ����� A zero of this maximal
monotone operator is a solution of ������
Algorithm ����� when applied to this problem yields

� �
�
�

�

�

�xk���� 
�xk�

�

 ��J 
 IXad��xk���

�
� �����

The idea of using such a nonsymmetric auxiliary operator to minimize a
function may seem rather odd� Nevertheless� the relaxation a nonsymmetric
part of ��J 
 IXad � at each iteration is not as eccentric as it may seem� In
the linear case� � when J � �

�hx�Axi�hb� xi� with A linear and b � X � and

Xad � X �� by choosing 
 � I � �U � where U is an upper triangular part
of A� Algorithm ����� turns out to be a Gauss�Siedel algorithm	 a triangular
system has to be solved at each iteration� Using this type of strategy� in the
nonlinear case� sequential version of gradient or relaxation algorithms may
be obtained� To illustrate this point� let us consider the following example

min
�y�z
�Y ad�Zad

F �y� z�
def
� f�y� 
 hy� h�z�i
 g�z�� �����

where Y and Z are two Hilbert spaces� h 	 Z � Y and f 	 Y � R and
g 	 Z � R� One assumes that F is a convex mapping and that Y ad and Zad

are two nonempty closed convex subsets�
By choosing a �generally� nonsymmetric operator 
 	 �y� z� �� �y �

�h�z�� ��z�� Algorithm ����� applied to this problem turns out to be a se�

quential relaxation algorithm	 knowing �yk� zk��

min
y�Y ad

�
�

��
ky � ykk� 
 F �y� zk�

�
provides yk��� ����a�

min
z�Zad

�
�

�

kz � zkk� 
 F �yk��� z�

�
provides zk��� ����b�

If f and g are di�erentiable� with


 	 �y� z� �� �
y � �h�z�� �f ��y�� ���
�z� �g��z�

�
�

one obtains a sequential gradient algorithm

yk�� � projY ad

�
yk � �

�F

�y
�yk� zk�

�
� ����a�

zk�� � projZad

�
zk � 


�F

�z
�yk��� zk�

�
����b�

where� e�g�� projY ad denotes the projection on Y ad� clearly� partial lineariza�
tions of f and g would yield algorithms halfway between ����� and ������

Proposition ���� Assume that

� J 	 X � R is a convex� l�s�c� function which is coercive over Xad�
� the auxiliary operator 
 	 X � X has the Dunn property over every
bounded subset of X�
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��� A� RENAUD AND G� COHEN

Then� Problem ����� has a solution xk��� The sequence fJ�xk�g decreases
and converges towards J�x�� where x� is a solution of ������ Furthermore�
the sequence fxkg has cluster points in the weak topology� and every such
cluster point is a solution of ������

Remark ���� The Dunn property of 
 over every bounded set is satis�ed
if this operator is strongly monotone and is Lipschitz continuous over every
bounded set �see ������

Remark ���� Assume that the mapping h in Problem ����� has the Lips�
chitz property with constant L� The auxiliary operator 
 which has been
chosen to obtain ����� is such that for all y� � y� � Y and for all z� � z� � Z�
one has that�


�y�� z�� � 
�y�� z��� �y�� z��� �y�� z��
�

� ky� � y�k� � � hh�z��� h�z��� y� � y�i
 �



kz� � z�k�

�
�
�� �

��

�
ky� � y�k� 
 �

�
�



� ��L�

�

�
kz� � z�k��

for all � 	 �� Therefore� if �
 � ��L�� the operator 
 is strongly monotone
and has the Lipschitz property	 the assumptions of Proposition ��� are
satis�ed� Algorithm ��� converges�
Proposition ��� also ensures the convergence of Algorithm ��� provided

that h� f � and g� have the Lipschitz property�

���� General case

If M 	 X � X is a linear continuous� symmetric� strongly monotone

operator� then kxkM denotes the related norm hx�Mxi����
Theorem ���� Let � 	 X � �X be a maximal monotone operator� Assume
that 
 � K� 
 � where�

� K� is the derivative of a convex mapping K	 K� is supposed to be
Lipschitz over any bounded subset and to satisfy

�x�� x� � dom�� hK��x���K ��x��� x� � x�i � kx� � x�k�M � �����

�  	 X � X is hemicontinuous�

Suppose that there exists A 	 � such that

�x�� x� � dom�� ����� ��� � ��x��� ��x�� 	
h�� � ��� x� � x�i � �

A
k �x���  �x��k�M�� � �����

and that � � � � ��A	 then Problem ����� has a unique solution� Assuming
� has a zero x�� the sequence fxkg has cluster points in the weak topology
and every such cluster point is a zero of �� Moreover�

� f �xk�g strongly converges towards  �x�� 
which� after ������ is unique
even if x� is not� and f
�xk����
�xk�g strongly converges towards �	

� if K� is continuous when the domain and the range spaces are both
equipped with the weak topology� the whole sequence fxkg converges
weakly towards a zero of �	
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AUXILIARY PROBLEM PRINCIPLE ���

� if � is strongly monotone� fxkg strongly converges towards the unique
zero of ��

Remark ���� Assumptions of Theorem ��� ensure the continuity of K� in
the strong topology� In a �nite dimensional space� the convergence of the
whole sequence towards a solution is thus established without any further
assumptions�

Remark ��
� It has already been pointed out that ����� is nothing but
����� for 
 � K� � ��� �that is� for  � ����� In this case� for M � I �
assumption ����� may be written as follows

�x�� x� � Xad 	 h��x�����x��� x� � x�i � �

A
k���x��� ���x��k�� �����

Under this assumption� if K is strongly convex with constant b� if � �
� � �b�A� and if �� is hemicontinuous� convergence will be ensured by
Theorem ����
Therefore� convergence can be claimed without assuming the monotonic�

ity of �� and �� but only the monotonicity of �� Moreover� this convergence
does not only result from the properties of � �or of ��� but also from a re�
lationship between the geometry of � and that of �� as expressed by ������
The property ����� is the Dunn property whenever � � ��� Therefore�

Theorem ��� turns out to be a generalization of the convergence result ob�
tained by Mataoui ����� Zhu and Marcotte proved the convergence of a
scheme like ����� under the assumption that �� enjoys the Dunn property
and that �� is monotone� In such a case� ����� is also satis�ed�

Remark ���� In order to derive Algorithm ����� from ������ one can choose
K� � I and �� � �� that is� �� � �� and then� the assumption which
ensures convergence of ����� is the Dunn property of �� But� one can also
obtain ����� from ����� with any nonzero ��� provided this is symmetric
�choose K� � I � ���� that is�  � ����� Then� condition ����� may turn
out to be weaker than the Dunn property of �� For example� in R�� consider

��x� y� �

�
x� y
x

�
� ���x� y� �

�
�
�x

�
� ���x� y� �

�
x� y
�x

�
�

�� Application to saddle point problems

In the general case� the Dunn property ensures convergence of Algo�
rithm ������ We aim at showing that� by taking advantage of the speci�c
structure of the operators related to convex�concave functions� this Dunn
assumption may be weakened� The application of Theorem ��� proves con�
vergence of this algorithm provided that the partial Dunn property holds
true �see De�nition ���� below�� This property can be enforced by partial
regularization�

���� Partial regularization

������ Definition� Let Y and Z be two Hilbert spaces such thatX � Y�Z�
For all x � X � �Y �x� and �Z�x� denote the projection of ��x� onto Y and
Z� respectively�
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��� A� RENAUD AND G� COHEN

Definition ���� The operator � is Z�regularizable if it is monotone and if
the following two assumptions hold	

�y � Y� fdom�Z�y� 	� 
��g � f�Z�y� 	� is maximal monotoneg � �����

��y� z� � Y � Z� ��y� z� � �Y �y� z���Z�y� z�� �����

Definition ���� Assume that � is Z�regularizable� Let c be a positive
number� The partial regularization of � over Z is de�ned as follows	 �Z

c 	
X � �X �

x � �y� z� �� �Z
c �x�

def
�

	
�
�
�
c�Y �y� s�
��

c �s� z�

�
if dom�Z�y� 	� 
��

� otherwise

�����

where s is the unique solution of

� � �
c
�s� z� 
 �Z�y� s�� �����

Problem ����� consists in �nding a zero of the sum of two maximal mono�
tone operators� one of them� proportional to identity� having the whole space
as its domain� Hence� this sum is a maximal monotone operator �see ������
Moreover� because identity is strongly monotone� Problem ����� has a unique
solution �see Proposition �����

Proposition ���� Suppose � is Z�regularizable and has zeros� Then� the
zeros of �Z

c are those of � and conversely�

Proof� Let x� � �y�� z�� � X be a zero of �� Then� from ����� it follows that
sZ�x

�� � z� and thus x� is a zero of �Z
c �

Conversely� if x� � �y�� z�� � X is a zero of �Z
c � the projection of �

Z
c �x

��
onto Z shows that s�x�� � z� and therefore� from ������ � � �Z�x

��� The
projection of �Z

c �x
�� onto Y shows that � � �Y �x��� Finally� from assump�

tion ������ we conclude that � � ��x���

������ Partial regularization and partial Dunn property�

Definition ���� The operator � 	 X � �X enjoys the partial Dunn prop�
erty over Z with constant AZ � R�� if
��x�� x�� � X �X� ����� ��� � ��x��� ��x�� 	

h�� � ��� x� � x�i � �

AZ
k���Z � ���Zk�� �����

Remark ���� If ����� holds� �Z�y� 	� 	 z �� �Z�y� z� has the Dunn property
and is thus a single�valued operator� Therefore� ����� can be rephrased	

��x�� x�� � X �X� ����� ��� � ��x��� ��x�� 	
h�� � ��� x� � x�i � �

AZ
k�Z�x����Z�x��k��

Proposition ��
� Suppose � is Z�regularizable and has a zero� The opera�
tor �Z

c is monotone and has the partial Dunn property over Z with constant
��c�
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Proof� Let x�� x� � X � Let ���� ��� � �Z
c �x�� � �Z

c �x��� The de�nition of
�Z
c shows that there exists ����Y � ���Y � � �Y �y�� s����Y �y�� s�� such that

h�� � ��� x� � x�i
� h���Y � ���Y � y� � y�i
 �

c
h�s� � z��� �s� � z�� � z� � z�i
 �z �

�

� �����

One has that

! �
�

c
k�s� � z��� �s� � z��k� � �

c
h�s� � z��� �s� � z�� � s� � s�i �

Moreover� the de�nition ����� of s� and s� subsumes the existence of
����Z� ���Z� � �Z�y�� s��� �Z�y�� s�� such that

! �
�

c
k�s� � z��� �s� � z��k� 
 h���Z � ���Z � s� � s�i �

Substituting this equality in ����� and using Assumption ������ one gets

h�� � ��� x� � x�i � �

c
k�s� � z��� �s� � z��k�
h�� � ��� �y�� s��� �y�� s��i �

where �� � ��y�� s�� and �� � ��y�� s��� The proof is completed by appeal�
ing to the monotonicity of � and De�nition ����

���� Saddle point problems

Consider the following problem

min
��Vad

max
���ad

"�
� ��� �����

where

� " is a convex�concave l�s�c��u�s�c� function�
� Vad � V and #ad � # are two closed convex subsets of the Hilbert
spaces V and #�

Consider
$ 	 �
� �� �� $��
� ��� $��
� ���

where

$��
� ��
def
� ���" 
 IVad����
� ��� ����a�

$��
� ��
def
� ����"
 IV��ad ��
� ��� ����b�

This mapping is maximal monotone �see ����� The zeros of $ are the solutions
of ������

������ Algorithm� Assume that " � L 
M where L and M are two
convex�concave l�s�c��u�s�c� mappings� L is supposed to be G%ateaux�
di�erentiable with a hemicontinuous derivative� To compute solutions of
������ consider the algorithm	 knowing �
k� �k�� derive �
k��� �k��� from
the resolution of

max
���ad

min
��Vad

��
�

�
G�
�� �G���
k�� 
��
 �




�
H�����H �

���
k�� �

��


�L���
k� �k�� 
�
 �L���
k� �k�� ��
M�
� ��

�
� �����
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where � and 
 are positive numbers and where G �respectively� H� is a
strongly convex �respectively� strongly concave� auxiliary function� This
algorithm falls into the framework of the Auxiliary Problem Principle� For
G� � �H � � I and L � "� one obtains a gradient algorithm which is nothing
but a parallel form of the Arrow�Hurwicz algorithm	


k�� � projVad
�

k � �"���


k� �k�
�
� �����a�

�k�� � proj�ad
�
�k 
 
"���


k� �k�
�
� �����b�

In the case when M � "� one obtains a classical proximal algorithm�
Moreover� Algorithm ����� may be viewed as an application of the general
scheme ����� to $� By picking up the following auxiliary operator


 	 �
� �� �� 
�
� �� �

�
G��
�� �L���
� ��

� �
�H

���� 
 �L���
� ��
�
� ������

Algorithm ����� takes the following form	 � belongs to�
�
�

�
G��
k����G��
k�

�

 L���
k� �k� 
 �� �M
 IVad����


k��� �k���

�
�

��H ���k��� 
H ���k�
�� L���
k� �k� 
 �� ��M
 IV��ad ��


k��� �k���

�
�

These are nothing but the optimality conditions of Problem ������

������ Convergence�

Theorem ���� Consider Problem ����� where " � L 
M is a convex�
concave mapping such that�

� " has a saddle point x� � �
�� ��� over the closed convex subset
Vad �#ad�

� M 	 V �#� R is convex�concave l�s�c��u�s�c� over Vad � #ad�
� L 	 V � #� R is convex�concave l�s�c��u�s�c� and di�erentiable with a
hemicontinuous derivative over Vad �#ad�

Assume that�

� L���	� �� is L�Lipschitz 
uniformly in ���
� L���	� �� is C�Lipschitz 
uniformly in ���

and that the following condition is satis�ed

��
�� ���� �
�� ��� � Vad � #ad� ����� ��� � $�
�� ���� $�
�� ����
h�� � ��� �
�� ���� �
�� ���i � �

D

��L���
�� ���� L���
�� ���
��� � ������

where $ is the operator de�ned by ������
Consider Algorithm ����� where G and �H are strongly convex� with con�

stants bG and bH� and di�erentiable with Lipschitz continuous derivatives
over every bounded subset�

Then� if � and 
 satisfy

� � 
 �
bH

�D
 C���
� � � � �

bG
�
 L

� ������

for some � 	 �� 
k�� and �k�� do exist in ����� and are unique� The
sequence f�
k� �k�g has cluster points in the weak topology� Every such
cluster point is a saddle point of " over Vad � #ad� If L�� G� and H � are
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continuous when the domain and range spaces are equipped with the weak
topology� the whole sequence f�
k� �k�g converges weakly towards a solution�

Proof� Under the foregoing assumptions� the operator $ de�ned by �����
is a maximal monotone operator� Algorithm ����� is a particular instance
of ����� for the auxiliary operator 
 de�ned by ������� To complete this
proof� one has thus to show that� for this auxiliary operator� the assumptions
of Theorem ��� are satis�ed�
The operator 
 is equal to K� 
 � with

K 	 �
� �� �� K�
� ��
def
� G�
�� �



H���� �L�
� ��� ������

 	 �
� �� ��  �
� ��
def
�

�
�

�L���
� ��
�
� ������

Let x�
def
� �
�� ��� � Vad � #ad and x�

def
� �
�� ��� � Vad � #ad� The strong

monotonicity of G� and of �H � yields

�Kz �
 ��
K��x���K��x��� x� � x�

� � bGk
� � 
�k� 
 �



bHk�� � ��k�

� �
�L���
�� ���� L���
�� ���� 
�� 
�

�
 �z �
��

� �
�L���
�� ���� L���
�� ���� �� � ��

�
 �z �
��

�

The concavity of L�
� 	� and the Lipschitz property of L���	� �� yield��L���
�� ���� ��� ��
�
�
�L���
�� ���� L���
�� ���� �� � ��

�
� �L���
�� ���� ��� ��

�
� �Ck
� � 
�kk�� � ��k � L�
�� ��� 
 L�
�� ������L���
�� ���� ��� ��

� � �Ck
� � 
�kk�� � ��k � L�
�� ��� 
 L�
�� ����
Since L�	� �� is convex and L���	� �� is Lipschitz� one has that

� �L���
�� ���� 
�� 
�
� � L�
�� ���� L�
�� ���� L

�
k
� � 
�k���L���
�� ���� 
�� 
�

� � L�
�� ���� L�
�� ���� L

�
k
� � 
�k��

The sum of these four inequalities yields

��� � �� � �Lk
� � 
�k� � �Ck
� � 
�kk�� � ��k�
and thus

!K � �bG � � �L 
 ��� k
� � 
�k� 
 �




�
bH � 


C�

�

�
k�� � ��k� ������

for all � � R��� If ������ holds true� then
M 	 �
� �� �� �bG � � �L
 ���
 
 ���
�

�
bH � 
C���

�
�
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is strongly monotone� With this de�nition ofM � ������ is nothing but ������
Let ���� ��� � $�x�� � $�x��� Inequality ������� the de�nition ������ of  
and that of M imply that

h�� � ��� x� � x�i � �

D

��L���
�� ���� L���
�� ���
���

� �

�D

�




�
bH � 


C�

�

�
k �x���  �x��k�M�� �

Because bH 	 
C���� inequality ����� is satis�ed for an appropriate de�ni�
tion of A� With this value of A� assumptions on � of Theorem ��� hold true
if

� � � �
�

�D

�




�
bH � 


C�

�

�
�

With the condition upon 
� this inequality is satis�ed� Therefore� Theo�
rem ��� implies Theorem ����

Corollary ���� Consider Problem ����� where " is a convex�concave
l�s�c��u�s�c� mapping which has a saddle point �
�� ��� over the closed convex
set Vad �#ad� Assume that�

� " is convex�concave� di�erentiable with a hemicontinuous derivative
which enjoys the partial Dunn property over # with constant D�

� "���	� �� is L�Lipschitz 
uniformly in ���

Then� "���	� �� is Lipschitz with constant C �
p
DL� Moreover� if � and 


satisfy

� � 
 �
�

D�� 
 L���
� � � � �

�

�
 L
� ������

for some � 	 �� then the sequence f�
k� �k�g obtained with Algorithm ������
has cluster points in the weak topology� Every such cluster point is a saddle
point of " over Vad � #ad� If "� is continuous when the domain and range
spaces are equipped with the weak topology� the whole sequence converges
towards a saddle point�

Proof� Let 
�� 
� � Vad and � � #ad� The Lipschitz property of "���	� �� and
the partial Dunn property of " yield

Lk
� � 
�k� � k"���
�� ��� "���
�� ��kk
�� 
�k
� �

"���
�� ��� "���
�� ��� 
�� 
�
�

� �

D
k"���
�� ��� "���
�� ��k��

This inequality shows that "���	� �� is Lipschitz with constant
p
DL� This

point being �xed� Corollary ��� is a straightforward application of Theo�
rem ����

�� Convergence rate

The convergence of Algorithm ����� is proved by showing that a certain
Lyapounov function decreases� This function is generally not the square of
the Hilbert space distance of the current point from the optimum� and this
does not generally decrease at each iteration� Obtaining a classical linear
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convergence result is thus out of question� Nevertheless� if � is strongly
monotone� linear convergence �in the average� �see De�nition ��� below� can
be proved� Moreover� this strong monotonicity assumption can be weakened
if the symmetric part of 
 is linear� Then� the Lipschitz property of the
inverse yields a convergence rate again linear in the average�
The evaluation of this convergence rate in the particular case of symmetric

auxiliary operators �
 � K�� shows that the ratio of the strong monotonicity
constant �or of the inverse of the Lipschitz constant of the inverse� of � by
the Lipschitz constant of 
 is decisive for the convergence rate�
Results about convergence rates are stated in x��� and ��� and proofs are

found in Appendices B and C� respectively�

���� Mean convergence rate and Lyapounov functions

Definition ���� The sequence fxkg converges in the average linearly to�
wards x�� with the rate � � ��� ��� if

�k � N 	 lim sup
n���

n

s
kxk�n � x�k
kxk � x�k 
 �� �����

Proposition ���� Let � 	 X � R be a convex mapping over Xad which has
a minimum x� such that�

�ba � R��� �x � Xad 	 ��x� � ba
�
kx� x�k�� �����

�bL � R��� �x � Xad 	 ��x� 

bL
�
kx� x�k�� �����

Let fxkg be a sequence of Xad such that

�� � ��� ��� �k � N 	 ��xk���� ��xk� 
 ��
�
��xk�� ��x��

�
� �����

Then fxkg converges in the average linearly towards x� with the rate
p
�� ��

Proof� Setting x � x�� inequalities ����� and ����� show that ��x�� � ��
From ������ it follows that

��xk���� ��x�� 
 ��� ��
�
��xk�� ��x��

�
and thus� for all n � N��

��xk�n�� ��x�� 
 ��� ��n
�
��xk�� ��x��

�
�

Since ��x�� � �� ����� and ����� yieldba
�
kxk�n � x�k� 
 ��xk�n�� ��x�� and ��xk�� ��x�� 


bL
�
kxk � x�k��

The last three inequalities imply that

�n � N�� kxk�n � x�k 
 ��� ��n��

sbLba kxk � x�k�

from which� for all � � �� it follows that

�l � N� 	 �n 	 l� kxk�n � x�k 
 ��� ��n��kxk � x�k�
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and thus

lim sup
n���

n

s
kxk�n � x�k
kxk � x�k 


p
�� ��

Since this inequality holds for every � � �� it holds for � � ��

���� Strong monotonicity

������ General case�

Assumption ���� The assumptions of Theorem ��� are satis�ed and

� the operator � has a unique zero x� such that

�a � R�� 	 �x � dom�� ��x � ��x��
�
�x� x� x�

� � akx� x�k�� �����

� the operator  is Lipschitz continuous over every bounded subset of
the domain of ��

Remark ���� Inequality ����� obviously holds if � is strongly monotone�
Yet� it may be satis�ed by an operator which does not share this property�
For example� the subdi�erential of the function x� jxj
 IB�x�� where B is
a closed bounded interval of R� satis�es ������

Theorem ���� Under Assumption 
��� Algorithm ����� converges strongly
and in the average linearly towards x��

������ Symmetric auxiliary operator�

Proposition ��
� In addition to Assumption 
��� suppose that  � � and
that K� is Lipschitz continuous with constant B over the domain of �� Al�
gorithm ����� becomes

� �
�
�

�

�
K��xk����K ��xk�

�

��xk���

�
� �����

It converges strongly and in the average linearly with the ratep
���� 
 ��a�B��

Remark ���� Since  � � here� one may consider that A in Theorem ��� is
arbitrarily small and that � may be taken arbitrarily large� Hence the rate
of the average linear convergence can be made arbitrarily good by increasing
�� This is a well known fact in the context of the proximal point algorithm
to which ����� is reduced in the case considered here� However� from the
practical point of view� ����� cannot always be solved easily without further
specialization� This is the topic of the next remark which explains how a
practical bound then arises for ��

Remark ���� Consider the auxiliary function

K 	 x �� �

�
kxk� � �J�� �����

where J� is a di�erentiable function with an A��Lipschitz derivative� By
introducing the term ��J�� one aims at canceling the coupling terms that
would prevent decomposition in the original problem� In order to ensure
the strong convexity of K �and thus the convergence of ������� one is led to
choose � 	 �A�� For � � �A�
 �� with � positive and �small�� one obtains
�BK���� � A� 
 ���� The convergence rate of ����� becomes thenq

��
�
� 
 a��A� 
 ����

�
�

Esaim� Cocv� September ����� Vol� 	� pp� 	
���
�



AUXILIARY PROBLEM PRINCIPLE ���

Since � can be chosen as small as necessary� it is the ratio a�A� between
the strong convexity constant � of the whole operator � � and the Lip�
schitz constant of J �� which determines the best possible convergence rate�
Therefore� it is once more the relationship between the whole operator and
the part which enters the relaxation scheme at each iteration that plays the
major role�

������ Partial relaxation and nonsymmetric auxiliary operator�
We now consider Algorithm ������ As it has already been noticed� this
algorithm is a particular case of ����� in which 
 � K� � ���� Because
the operator �� is not necessarily symmetric� generally 
 is not symmetric�
Therefore� Algorithm ����� is not a particular case of ������

Proposition ��
� Assume that the operator � is such that � � �� 
 ��

where

� �� is a single�valued monotone operator which has the Dunn property
with constant A� over the domain of �	

� �� is maximal monotone�

Assume that K has a B�Lipschitz derivative and is strongly convex with
constant b over the domain of �� then if � � � � �b�A�� Algorithm �����
converges in the average linearly with the rateq

��
�
� 
 ����B�a��� �A���b�

�
�

For � � b�A�� this convergence rate is
p
���� 
 ba�BA���

���� Lipschitz inverse

������ General case�

Assumption ����� The assumptions of Theorem ��� are satis�ed and

� the operator � has a unique zero x�� and it satis�es

�� � R�� 	 �x � dom�� ��x � ��x�� k�xk � �kx� x�k� �����

� the auxiliary operator  is Lipschitz over every bounded subset of the
domain of ��

� the auxiliary function K is quadratic and has a continuous derivative�

Remark ����� Note that if ����� holds true� then ����� is satis�ed with the
same constant� If � has the Dunn property and satis�es ������ ����� holds
true� Nevertheless� ����� is weaker than ������ The rotation over R�

�r 	 �y� z� ��
�
� ��
� �

��
y
z

�
satis�es ����� but not ������

Theorem ����� Under Assumption 
���� Algorithm ����� strongly con�
verges towards the unique zero of � and its convergence is in the average
linear�
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������ Symmetric auxiliary operator�

Proposition ����� Under Assumption 
���� consider Algorithm �����
where K� is linear continuous with norm B� This algorithm strongly con�
verges towards the unique zero of �� This convergence is in the average
linear with the convergence rate

p
����
 ����B����

Appendix� proof of technical results

Appendix A� Convergence

A��� Symmetric case

Proof of Proposition ���� Because J is convex and l�s�c�� the mapping
x �� ��J
IXad ��x� is maximal monotone� Because 
 has the Dunn property
�and thus the Lipschitz property� over every bounded subset of X � it is
hemicontinuous over X � Proposition ��� thus shows that the operator

&k 	 x �� ���J 
 IXad ��x� 
 
�x�� 
�xk��
is maximal monotone� Let x � Xad and �kx � &k�x�� Because 
 is monotone
and J is convex� one has that�

�kx� x� xk
� � �

�
J�x�� J�xk�

�
�

Since J is coercive� &k satis�es Assumption ���� Problem ����� has thus a
solution �see Proposition �����
Let jk�� be an element of ��J 
 IXad ��xk��� such that

�

�

�

�xk���� 
�xk��
 jk�� � �� �A���

From the de�nition of the subdi�erential� it follows that

�

�

�

�xk���� 
�xk�� xk � xk��

�
�
�
jk��� xk�� � xk

�
� J�xk���� J�xk�� �A���

Because 
 is monotone� the sequence fJ�xk�g is decreasing� Because
fJ�xk�g is decreasing and bounded from below by J�x��� it converges� This�
and the coercivity of J � prove that fxkg is bounded� This sequence has thus
cluster points in the weak topology�
Let A be the Dunn constant of 
 over a bounded set which contains all

the xk � From �A���� it follows that

� �

�A
k
�xk���� 
�xk�k� � J�xk���� J�xk�� �A���

Because fJ�xk�g converges� the sequence fk
�xk��� � 
�xk�kg converges
towards �� From �A���� it follows then that fjkg strongly converges to zero�
Because the graph of a maximal monotone operator is closed in Xweak �
Xstrong �see ����� every cluster point of fxkg in the weak topology is a zero
of ��J 
 IXad � and thus a solution of ������
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A��� General case

Lemma A��� Under the assumptions of Theorem ���� Problem ����� has
a unique solution� there is a unique xk�� such that there exists �k�� �
��xk��� such that

� �
�

�

�

�xk���� 
�xk��
 �k��� �A���

Proof� Since K� is Lipschitz over every bounded subset and  is hemicon�
tinuous� 
 � K�
� is hemicontinuous overX � The operator � is maximal
monotone� Proposition ��� ensures that if �����
 
 � is monotone� it is
maximal monotone� In addition� from Proposition ���� it follows that if
�����
 
 � is strongly monotone� Problem ����� has a unique solution�
Let us prove the strong monotonicity of this operator� Let x�� x� � dom�

and let ���� ��� � ��x��� ��x��� From ����� and ������ it follows thatD�
�

�x�� 
 �� � �

�

�x��� ��� x� � x�

E
�

�

�
kx� � x�k�M 
 h �x���  �x��� x� � x�i
 �

A
k �x���  �x��k�M�� �

Furthermore�

h �x���  �x��� x� � x�i � �k �x���  �x��kM�� kx� � x�kM �A���

� � �
A
k �x���  �x��k�M�� � A

�
kx� � x�k�M �

Since � � ��A� the previous inequalities prove that 
�� 
 � is strongly
monotone� Consequently� Problem ����� has a unique solution�

Lemma A��� Suppose that the assumptions of Theorem ��� hold true and
consider the function �� 	

x �� �

�

�
K�x���K�x�� �K��x�� x� � x

��


�
 �x���  �x�� x� � x

�
�A���

where x� is a zero of �� The sequence fxkg generated by Algorithm �����
satis�es� for all � 	 ��

���x
k���� ���x

k� 
 ��� �

��
kxk�� � xkk�M 


�

��
k �xk��  �x��k�M��

� �
�k��� xk�� � x�

�
� �A���

Proof� From the de�nition of ��� one has that

���x
k���� ���x

k� �
�

�

�
K�xk��K�xk���� �K��xk�� xk � xk��

��


�

�

�
K��xk��K��xk���� x� � xk��

�


�
 �xk��  �xk���� x� � xk��

�
� �

 �xk��  �x��� xk � xk��
�
�

Since 
 � K� 
 � � equality �A��� and ����� yield

���x
k���� ���x

k� 
 � �

��
kxk � xk��k�M � ��k��� xk�� � x�

�

 k �xk��  �x��kM��kxk � xk��kM � �A���
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Since� for all � 	 �� one has that

k �xk��  �x��kM��kxk � xk��kM 
 �

��
k �xk��  �x��k�M��



�

��
kxk � xk��k�M �

inequality �A��� implies �A����

Proof of Theorem ���� The existence and the uniqueness of the solution of
����� is established by Lemma A��� To complete the proof� we proceed in
four stages	

� we introduce a Lyapounov function ��
� we show that the sequence f��xk�g decreases�
� we derive that every cluster point of fxkg is a zero of ��
� we �nally prove additional convergence results under further assump�
tions�

Choice of a Lyapounov function� Let � 	 X � R be de�ned as

� 	 x �� ���x� 

�

A
k �x���  �x�k�M��� �A���

where �� is de�ned by �A��� and where x
� is a zero of �� Inequality �����

and the Schwarz inequality yield

��x� � �

��
kx� x�k�M � k �x��  �x��kM��kx� x�kM



�

A
k �x��  �x��k�M��

� �

�

�
�

�
� A

�

�
kx� x�k�M �A����

by using �A��� again� Since � � � � ��A� this inequality proves that � is
coercive and bounded from below by zero�

The sequence f��xk�g is decreasing� Because � � ��x��� inequalities �A���
and ����� imply that

��xk���� ��xk� 
 � �

��
��� �� kxk � xk��k�M

� �

A

�
�� �A

��

�
k �xk��  �x��k�M��

for any � � R��� Let � � �� 
 �A��� ��� then�

��xk���� ��xk� 
 � �

�� 
 �A���A

�
�� �A

�

�
k �xk��  �x��k�M��

� �

��

�
�� �A

�

�
kxk � xk��k�M � �A����

Since � � � � ��A� the sequence f��xk�g is decreasing� Since � is bounded
from below� this sequence converges� Because � is coercive� we can conclude
that fxkg is bounded and thus that it has cluster points in the weak topology�
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Furthermore� since f��xk�g converges� the di�erence of two successive terms
tends to zero� and then� �A���� implies that

lim
k���

kxk � xk��k � �� �A����

lim
k���

k �xk��  �x��k � �� �A����

Every cluster point of fxkg is a zero of �� BecauseK� is Lipschitz continuous
over every bounded subset� �A���� implies that

lim
k���

kK��xk��K��xk���k � ��

With �A����� it follows that limk��� k
�xk� � 
�xk���k � � and� conse�
quently� f�kg strongly converges towards �� Because the graph of a maximal
monotone operator is closed in Xweak�Xstrong �see Ref� ����� we can conclude
that every cluster point of fxkg in the weak topology is a zero of ��
Uniqueness of the cluster point� Assume that K� is continuous when both
the domain and the range spaces are equipped with the weak topology� Let
x� and x� be two cluster points of the sequence fxkg� These points are zeros
of �� Thus� we can consider the Lyapounov function �x� �respectively� �x��
de�ned by �A��� when choosing x� � x� �respectively� x� � x���
Let l� and l� denote the limits of the sequences f�x��xk�g and f�x��xk�g�

respectively� Consider a subsequence fxkig of fxkg which converges weakly
towards x�� The strong convergence of f �xki�g towards  �x�� ���� and the
foregoing assumption of continuity upon K� yield

l� � l� � lim
i���

�
�x��x

ki�� �x��x
ki�
�

� lim
i���

�
K�x���K�x���

�
K ��xki�� x� � x�

��
� K�x���K�x��� hK��x��� x� � x�i
� �x��x���

Points x� and x� playing symmetric parts� it follows that

��x��x�� � l� � l� � �x��x���

hence �x��x�� � �� With help of inequality �A����� one then concludes that
x� � x��

Strong convergence� Since f�kg converges strongly towards �� if � is strongly
monotone� the sequence fxkg converges strongly�
Remark A��� Theorem ��� does not assume the monotonicity of 
� How�
ever� we proved the strong monotonicity of 
��
 ��

Remark A��� The term �����
�
K�x���K�x�� �K��x�� x� � x

��
� which

appears in the de�nition of the Lyapounov function �see �A���� �A����� is
the Lyapounov function which is used in most of the convergence proofs of
the �Auxiliary Problem Principle� introduced by Cohen �see ����� This term
also occurs in the study of proximal algorithm using Bregman functions by
Chen and Teboulle ���� At least when K� is linear� it may be understood as
a measure of the distance to x� in the metric de�ned by K��

�Remember ��x�� is unique even if x� is not�
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Appendix B� Convergence rate in the strongly monotone
case

Lemma B��� Suppose Assumption 
�� holds true and consider the function

�� 	 x �� ���x� 

�

�
k �x��  �x��k�M�� 


�
�� �A

�

�
akx� x�k�� �B���

where �� is de�ned by �A���� The sequence fxkg generated by Algo�
rithm ����� is such that

���x
k���� ���x

k� 
 �
�
�� �A

�

�
akxk � x�k�� �B���

Furthermore� �� satis�es inequalities ����� and ����� over a closed convex
subset which contains all the xk�

Proof� Since � � ��x�� and � � ��A� the inequalities ����� and ����� yield�
�k��� xk�� � x�

�
�

�A

�

�
�k��� xk�� � x�

�



�
�� �A

�

��
�k��� xk�� � x�

�
� �

�
k �xk����  �x��k�M�� 


�
�� �A

�

�
akxk�� � x�k��

For � � �� the inequality �A��� takes the following form

���x
k���� ���x

k� 
 �

�
k �xk��  �x��k�M�� �

�
�k��� xk�� � x�

�
�

These two inequalities and the de�nition of �� yield �B����
It remains to prove ����� and ����� for ��� Theorem ��� proves that

the sequence fxkg is bounded� Hence� there exists a closed and bounded
convex subset to which the xk �and x�� belong and over which K� and  are

Lipschitz continuous� Consequently� ����� is satis�ed by �� for some bL�
Let x � dom�� The de�nition �B��� of �� and a standard consequence of

����� yield

���x� � �

��
kx� x�k�M � k �x��  �x��kM��kx� x�kM



�

�
k �x��  �x��k�M�� 


�
�� �A

�

�
akx� x�k�

�
�
�� �A

�

�
akx� x�k��

Since � � ��A� ����� is satis�ed by �� for some ba�
Proof of Theorem 
�
� We use Proposition ��� and the technical
Lemma B��� This lemma shows that �� de�ned by �B��� satis�es �����
and ������ Since � � � � ��A� inequalities �B��� and ����� show that �����
holds true�

Proof of Proposition 
��� Since  � �� the mapping �� de�ned by �B���
takes the following form	

�� 	 x �� �

�

�
K�x���K�x�� �K��x�� x� � x

��

 a

�
�� �A

�

�
kx� x�k��
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Lemma B�� shows that this function satis�es ����� and ������ Since K� is
B�Lipschitz� for all x � dom�� one has that

���x� 

�
B

��

 a

�
�� �A

�

��
kx� x�k��

This inequality and �B��� show that

���x
k���� ���x

k� 
 � a��� �A���

B��� 
 a��� �A���
���x

k��

Moreover� because ����� is satis�ed for every A 	 �� one has that

���x
k���� ���x

k� 
 � a

B��� 
 a
���x

k��

This proof is completed by using Proposition ����

Proof of Proposition 
��� Once more� Proposition ��� will be used� For
M � bI � ����� holds true� As for ������ it is implied by the Dunn property
of �� with constant A� and the fact that  � ���	 this leads to take
A � A��b in ������ With this evaluation of A� consider the Lyapounov
function �� de�ned by �B���� Inequality �B��� of Lemma B�� now reads	

���x
k���� ���x

k� 
 �
�
�� �A�

�b

�
akxk � x�k�� �B���

The operator K� is B�Lipschitz and �� has the Dunn property� From the
de�nition �B��� of �� and from the present form of ������ it follows that� for
all x � dom��

���x� 
 B

��
kx�x�k�


�
�� �A�

�b

��
akx� x�k� � �

���x�����x
��� x� x�

��
�

Since � � �b�A�� the monotonicity of �� yields

���x
k� 


�
B

��

 a

�
�� �A�

�b

��
kxk � x�k��

This and �B��� imply that

���x
k���� ���x

k� 
 � ��� �A���b�a

B��� 
 a��� �A���b�
���x

k�

� �
�
�� �

� 
 ����B�a��� �A���b�

�
���x

k��

Because � � � � �b�A�� with this inequality� Proposition ��� can be used�
given that ����� and ����� are also satis�ed thanks to Lemma B��� The proof
is thus complete�

Appendix C� Convergence rate and Lipschitz continuity
of the inverse

Lemma C��� Under Assumption 
���� consider the mapping

�� 	 x �� �

�

�
�K����

�

�x�� 
�x����
�x�� 
�x���



�

B

�
�� �A

�

�
��kx� x�k�� �C���
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The sequence fxkg that Algorithm ����� generates is such that

���x
k���� ���x

k� 
 � �

B

�
�� �A

�

�
��kxk � x�k�� �C���

Moreover� �� satis�es ����� and ����� over a closed convex set which contains
the whole sequence�

Proof� The assumptions of Theorem ��� are satis�ed� the sequence fxkg is
thus bounded� Consequently� there exists a closed bounded convex subset
which contains all the xk and x�� Over this subset� 
 is Lipschitz continuous�
Moreover� K is strongly convex� Therefore� �K���� is Lipschitz continuous�
Since 
 and �K���� are Lipschitz continuous� �� satis�es ������ The function
K being convex� the term

�
�K ����

�

�x�� 
�x��� �
�x�� 
�x��� is nonneg�

ative� Since � � � � ��A� �� satis�es ������
Let �k � �����

�
�K ����

�

�xk�� 
�x��� �
�xk�� 
�x���� One has that

�k�� � �k �
�

�

�
�K����

�

�xk���� 
�xk���
�xk���� 
�x���

� �

�

�
�K����

�

�xk���� 
�xk���
�xk���� 
�xk���

Since there exists �k�� � ��xk��� such that 
�xk��� � 
�xk� � ���k���
one has that

�k�� � �k � ����k��� �K����
�

�xk���� 
�x����
 �z �
�

� �
�
�K����

�
�k��

�
� �k��

�
� �C���

Inequality ����� yields

� � ����k��� xk�� � x�
�

� ����K�����k��� �xk����  �x���

 ����k��� xk�� � x�

�

 ��

���K����
�
�k��

���
M
k �xk����  �x��kM��


 � �
A
k �xk����  �x��k�M��


 ��
���K����

�
�k��

���
M
k �xk����  �x��kM��


 ��

�
A
���K ����

�
�k��

����
M
�

From ������ it follows that

� 
 ��A

�

�
�K����

�
�k��

�
� �k��

�
� �C���
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The operator K� is B�Lipschitz and symmetric� Thus� it has the Dunn
property with constant B� One has that�

�K������k���� �k��
�
�
�
K�
�
�K������k���

�
� �K������k���

�
� �

B

��K�
�
�K������k���

����
�
�

B
k�k��k��

This inequality� together with �C��� and �C���� implies that

�k�� � �k 
 ��
�
�� �A

�

� �
�K������k���� �k��

�

 � �

B

�
�� �A

�

�
k�k��k��

This inequality� the de�nition �C��� of � and ����� �nally yield �C����

Proof of Theorem 
���� The mapping � de�ned by �C��� satis�es the condi�
tions ����� and ����� of Proposition ��� �see Lemma C���� The condition �����
is the result of ����� and of �C��� also proved in Lemma C���

Proof of Proposition 
���� Because  � �� the Lyapounov function � which
is de�ned by �C��� takes the following form	

� 	 x �� �

�

�
K��x��K��x��� x� x�

�



�

B

�
�� �A

�

�
��kx� x�k��

Since K� is strongly monotone and Lipschitz continuous� � satis�es �����
and ������ Moreover� for x � dom�� one has that

��x� 

�
B

�



�

B

�
�� �A

�

�
��
�
kx� x�k�� �C���

The sequence fxkg generated by Algorithm ����� satis�es �C���� Inequal�
ity �C��� thus implies

��xk���� ��xk� 
 � ������� �A���

B� 
 ������� �A���
��xk��

Since Assumption ����� is satis�ed for every A 	 �� this may be reduced to

��xk���� ��xk� 
 � �����B�

� 
 �����B�
��xk��

The proof is completed by using this inequality and Proposition ����
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