@article{COCV_1997__2__359_0, author = {Chavent, G. and Kunisch, K.}, title = {Regularization of linear least squares problems by total bounded variation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {359--376}, publisher = {EDP-Sciences}, volume = {2}, year = {1997}, zbl = {0890.49010}, mrnumber = {1483764}, language = {en}, url = {http://archive.numdam.org/item/COCV_1997__2__359_0/} }
TY - JOUR AU - Chavent, G. AU - Kunisch, K. TI - Regularization of linear least squares problems by total bounded variation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 1997 DA - 1997/// SP - 359 EP - 376 VL - 2 PB - EDP-Sciences UR - http://archive.numdam.org/item/COCV_1997__2__359_0/ UR - https://zbmath.org/?q=an%3A0890.49010 UR - https://www.ams.org/mathscinet-getitem?mr=1483764 LA - en ID - COCV_1997__2__359_0 ER -
Chavent, G.; Kunisch, K. Regularization of linear least squares problems by total bounded variation. ESAIM: Control, Optimisation and Calculus of Variations, Volume 2 (1997), pp. 359-376. http://archive.numdam.org/item/COCV_1997__2__359_0/
[1] Applied NonlinearAnalysis, Wiley-Interscience, New York, 1984. | MR | Zbl
, :[2] Stable Solutions of Inverse Problems, Vieweg, Braunschweig, 1987. | MR | Zbl
:[3] Regularization by functions of bounded variation and applications to image enhancement, preprint. | MR | Zbl
, , :[4] Convergence of Tikhonov regularization for constrained ill-posed inverse problems, Inverse Problems, 10 ( 1994), 63-76. Boston, 1985. | MR | Zbl
, :[5] Finite Elements, Methods for Navier-Stokes Equations, Springer, Berlin, 1984. | MR | Zbl
, :[6] Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984. | MR | Zbl
:[7] The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind, Pitman, Boston, 1984. | MR | Zbl
:[8] Inverse und schlechtgestellte Probleme, Teubner, Stuttgart, 1989. | MR | Zbl
:[9] Sobolev Spaces, Springer, Berlin, 1985. | MR
:[10] Real and Complex Analysis, McGraw Hill, London, 1970. | Zbl
:[11] Nonlinear total variation based noise removal algorithm, Physica D, 60 ( 1992), 259-268. | Zbl
, , :[12] Mathematical Problems in Plasticity, Gauthier-Villars, Kent, 1985. | MR
:[13] Iterative methods for total variation denoising, preprint. | MR | Zbl
, :