Dubins' problem is intrinsically three-dimensional
ESAIM: Control, Optimisation and Calculus of Variations, Tome 3 (1998), pp. 1-22.
@article{COCV_1998__3__1_0,
     author = {Mittenhuber, Dirk},
     title = {Dubins' problem is intrinsically three-dimensional},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1--22},
     publisher = {EDP-Sciences},
     volume = {3},
     year = {1998},
     zbl = {0905.49019},
     mrnumber = {1600103},
     language = {en},
     url = {http://archive.numdam.org/item/COCV_1998__3__1_0/}
}
TY  - JOUR
AU  - Mittenhuber, Dirk
TI  - Dubins' problem is intrinsically three-dimensional
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 1998
DA  - 1998///
SP  - 1
EP  - 22
VL  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/COCV_1998__3__1_0/
UR  - https://zbmath.org/?q=an%3A0905.49019
UR  - https://www.ams.org/mathscinet-getitem?mr=1600103
LA  - en
ID  - COCV_1998__3__1_0
ER  - 
Mittenhuber, Dirk. Dubins' problem is intrinsically three-dimensional. ESAIM: Control, Optimisation and Calculus of Variations, Tome 3 (1998), pp. 1-22. http://archive.numdam.org/item/COCV_1998__3__1_0/

[1] L.E. Dubins: On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents, Am. J. Math., 79, 1957, 497-516. | MR 89457 | Zbl 0098.35401

[2] V. Guillemin, S. Sternberg: Symplectic techniques in physics, Cambridge University Press, 1984. | MR 770935 | Zbl 0576.58012

[3] V. Jurdjevic: Non Euclidean Elastica, Am. J. Math., 117, 1995, 93-124. | MR 1314459 | Zbl 0822.58010

[4] V. Jurdjevic: Casimir elements and optimal control, in Geometry in nonlinear control and differential inclusions, B. Jakubczyk ed., Polish Academy of Sciences, Warsaw, Banach Center Publ, 32, 1995, 261-275. | EuDML 262645 | MR 1364433 | Zbl 0859.49022

[5] V. Jurdjevic: Geometric Control Theory, Cambridge University Press, 1997. | MR 1425878 | Zbl 0940.93005

[6] A.J. Krener, H. Schättler: The structure of small-time reachable sets in low dimensions, SIAM J. Control Optimization, 27, 1989, 120-147. | MR 980227 | Zbl 0669.49020

[7] I.A.K. Kupka: Geometric theory of extremals in optimal control problems. I: The Fold and the Maxwell Case, Transactions of the AMS, 299, 1987, 225-243. | MR 869409 | Zbl 0606.49016

[8] I.A.K. Kupka: The ubiquity of Fuller's phenomenon, in Non-linear controllability and optimal control, H. J. Sussmann ed., Marcel Dekker, New York, 1990, 313-350. | MR 1061391 | Zbl 0739.49001

[9] J.E. Marsden, T. Ratiu: Introduction to Mechanics and Symmetry, Springer, New York, 1994. | MR 1304682 | Zbl 0811.70002

[10] D. Mittenhuber: Dubins' problem in H3, integration of abnormal extremals, in preparation.

[11] D. Mittenhuber: Dubins' problem in hyperbolic space, in Control Theory and its Applications, R. Sharpe ed., Can. Math. Soc. Conf. Proc. Ser., to appear. | MR 1648712 | Zbl 0980.53052

[12] D. Mittenhuber: Dubins' problem in the hyperbolic plane using the open disc model, in Control Theory and its Applications, R. Sharpe ed., Can. Math. Soc. Conf. Proc. Ser., to appear. | MR 1648713 | Zbl 0980.53053

[13] D. Mittenhuber: Applications of the Maximum Principle to Problems in Lie Semigroups, in Semigroups in Algebra, Geometry, and Analysis, K. H. Hofmann, J. D. Lawson and E. B. Vinberg. eds., de Gruyter, Berlin, 1995, 311-336. | MR 1350338 | Zbl 0898.60092

[14] F. Monroy Pérez: Non-Euclidean Dubins' problem, in Control Theory and its Applications, R. Sharpe ed., Can. Math. Soc. Conf. Proc. Ser., to appear. | MR 1626545

[15] F. Monroy Pérez: Non-Euclidean Dubins'problem: A control theoretic approach, PhD thesis, University of Toronto, 1995.

[16] J.G. Ratcliffe: Foundations of Hyperbolic Manifolds, Springer, Berlin, New York, 1994. | MR 1299730 | Zbl 0809.51001

[17] J.A. Reeds, L.A. Shepp: Optimal paths for a car that goes both forwards and backwards, Pacific Journal of Mathematics, 145, 1990, 367-393. | MR 1069892

[18] H.J. Sussmann: Shortest 3-dimensional paths with a prescribed curvature bound, in Proceedings of the 1995 IEEE Conference on Decision and Control, 1995, 3306-3312.