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OPTIMAL CONTROL OF LINEAR BOTTLENECK
PROBLEMS

M. BERGOUNIOUX AND F. TROLTZSCH

ABSTRACT. The regularity of Lagrange multipliers for state-constrained
optimal control problems belongs to the basic questions of control the-
ory. Here, we investigate bottleneck problems arising from optimal con-
trol problems for PDEs with certain mixed control-state inequality con-
straints. We show how to obtain Lagrange multipliers in LP-spaces for
linear problems and give an application to linear parabolic optimal con-
trol problems.

1. INTRODUCTION

The regularity of Lagrange multipliers for state-constrained optimal con-
trol problems belongs to the basic questions of control theory. This is known
for control systems governed by ODEs and refers to PDEs as well. In many
cases, Lagrange multipliers have to be measures, for instance, if pointwise
state-constraints are given in distributed parameter systems. Unfortunately,
several methods cannot be applied for measures as Lagrange multipliers. In
particular, standard second order sufficient optimality conditions cannot be
established, and the convergence of some numerical techniques is not en-
sured.

It is well known that Lagrange multipliers can be obtained for nonlinear
programming problems in Banach spaces (including control problems) by
considering the associated linearized problem (see Zowe and Kurcyusz [15]).
In this way, the theory of linear programming problems in Banach spaces
may serve as a tool to prove the existence of Lagrange multipliers.

For linear programming problems in LP-spaces with pointwise constraints
of bottleneck-type it has been known for a long time that associated La-
grange multipliers may exist in LP-spaces, too. We mention for instance
Grinold [7],[8], Levinson [10], and Tyndall [14]. Moreover, we refer to An-
derson [1] and the monography by Anderson and Nash [2].

Bottleneck problems appear in optimal control problems for ODEs with
certain mixed control-state inequality constraints. However, it seems that
this kind of problems has not been studied since many years; nevertheless
we may refer to a paper by Anderson and Philpott [3] which deals with
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236 M. BERGOUNIOUX AND F. TROLTZSCH

a ODE problem close to the PDE problem we are going to investigate.
Indeed, the associated theory can be extended also to the control of PDEs,
see Bergounioux and Tiba [4] and the short note of Tréltzsch [13]. Here,
we aim to extend those ideas to make them applicable to state-constrained
control problems governed by PDEs instead of ODEs.

In contrast to the results on linear continuous programming, where the
corresponding integral operators have bounded and measurable kernels, we
shall have to deal with weakly singular operators. Moreover, we have to
consider Lebesgue spaces LP(Q)),1 < p < oo, to get the maximum regularity
for Lagrange multipliers. In the early papers we mentioned above, only
spaces of L™-type appeared. To our knowledge, bottleneck problems have
not been studied yet from this extended point of view.

We develop the theory for linear problems with application to a linear par-
abolic optimal distributed control problem as an example. In a forthcoming
paper, a class of nonlinear parabolic control problems with pointwise mixed
control-state inequality constraints will be discussed using these results.

In this way we hope to contribute with a class of problems, where dif-
ferent methods such as augmented Lagrangian methods, Lagrange-Newton
methods, or second-order sufficient optimality conditions can be justified by
having sufficiently regular multipliers in LP-spaces.

The paper is organized as follows: first we introduce a class of linear
programming problems in L>(Q) where Q C RN*!is a certain measurable
set. On extending the problem to LP(Q)) (p > N/2+ 1) (without changing
the feasible set, which remains a subset of L°°(Q)), the associated dual
problem is defined. In sections 4 and 5 the existence of solutions to the dual
problems is shown for different choices of primal problems. In section 6 we
investigate duality relations. Finally, linear control problems for PDEs are
discussed in section 7 and 8.

We consider the so-called Primal Problem

max/ a(z,t)u(x,t) de dt
Q

(P) S ez, t) <ula,t) — x/ot/QG(x,f,t,s)u(f,s) d¢ ds < cy(z,t)

a.e. in @,

di(z,t) <ulz,t) < dy(z,t) a.e. in Q.

In this setting, a bounded, measurable subset @ ¢ RV, N > 1,Q := Q x
(0,7) and functions a € L*(Q),¢;,d; € L™(Q),7 = 1,2, are given, where
T > 0is fixed. Define D = {(t,s) € R? | 0 < s <t < T} and a continuous
function G : Q? x D — R supposed to satisfy

oo (2250, (1)

t—s

1\3|2

|G($7€7t78)| < kl(t - S)_

where ki, kg are positive real numbers (we have in mind Green’s functions
G for parabolic partial differential equations).

The main part of our analysis is devoted to the case ¢; = —00, ¢3 < o0,
diy =0, dy =00, and to ¢; = —00, ¢g < 00, dy =0, dy < 0. The cases ¢ =
—00, ¢ = 400 and dy = —o0, dg = 400 are more or less trivial. However,
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OPTIMAL CONTROL OF LINEAR BOTTLENECK PROBLEMS 237

we were not able to show the existence of regular Lagrange multipliers for
the general case of (P), where all bounds really appear.

2. AN INTEGRAL EQUATION

We would like to discuss first the integral equation

u(x,t):c(x,twr/o /Qa(x,g,t,s)u(g,s) d¢ ds (2.1)

for given ¢ € L™(Q). Equations of this type are basic for our theory. Let
us introduce the integral operator K:

(Ku)(ac,t):/o /Qa(x,g,t,s)u(g,s) dg ds. (2.2)

It is easy to show that K is continuous in L*(Q), and from LP(Q) to L*(Q)
for N >2,p> N/24+1and N = 1,p > 2. We refer to Troltzsch [11], p
138, Lemma 5.6.6.

For convenience, we endow the space L (Q)) with the equivalent norm [|ul|»,

lulls = sup ess e~ u(x, 1)), (2.3)

where A > 0 (it holds e lullos (@) < Mully < [lullpe(q))-
LEMMA 2.1. K is a contraction in L*°(Q), for sufficiently large X > A,.

Proof. In view of the definition of ||u||y and the estimate (1.1) we get

|Kul|lyx = supess|e” //G €t s)e ASu(f,s)dfds
(z,1)eQ

< sup ess // ky(t—s)” T e M=)
(z,t)eQ 0 JRY

exp( k2| €| )dfdsHuHA

t

Je

=  supessk / e M) ds [y < = [|ully,
(.)€Q 0 A

(note that [ e de = 7]k k> 0). O

COROLLARY 2.2. For all ¢ € L*™(Q), the equation (2.1) has a unique solu-
tion u € L=(Q). The mapping ¢ — u is continuous in L>(Q).

Proof. We have

N
2

_N
where k = kik, * 7w

=(I-K)~ Z K" (2.4)

by well known results on Neumann series. Moreover, ||(I—K)7Y|, < 1/(1-

|| K]|5), where we have used for convenience the symbol || - ||, to denote also
the norm of the operator K induced by || -||x. The result follows from the
equivalence of the norms || - ||y and || - |5 (q)- O
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238 M. BERGOUNIOUX AND F. TROLTZSCH

COROLLARY 2.3. If G(z,&,t,5) > 0 on Q* x D and c¢(z,t) > 0 a.e. in Q,
c € L™(Q), then u(z,t) > 0 a.e. in Q.

Proof. The Neumann series representation (2.4) yields this result, as ¢ > 0
implies K™ ¢ > 0 Vn € N. O

COROLLARY 2.4. (Comparison principle). Suppose that G(x,&,t,s) > 0 on
O? x D and w; € L™(Q), i = 1,2, are solutions of (2.1) associated to
¢ € L™(Q), 1=1,2. If c1(z,t) > ca(z,t) holds a.e. in Q, then uy(x,t) >
uz(z,t) a.e. in Q.
This result follows immediately from Corollary 2.3.

In the next corollary we consider K as an operator from LP(Q)) to L™= (Q).

COROLLARY 2.5. (Extended comparison principle). Suppose p > N/2 + 1.
Then the integral equation (2.1) has for each ¢ € LP(Q) a unique solution
u € LP(Q), and the mapping ¢ — u is continuous in LP(Q).

Assume G(2,&,t,8) >0 on Q2 x D, ¢; € LP(Q), i = 1,2, ¢i(x,t) > co(x,t)
a.e.in Q and let u; € LP(Q), i = 1,2, be the associated solutions of (2.1).
Then uy(x,t) > ug(z,t) a.e. inQ.

Proof. We put v :=u — ¢, then (2.1) reads
v=Kec + Kv. (2.5)

As K: LP(Q) — L*(Q), continuously, the right hand side K¢ belongs
to L°°(Q) and depends continuously on ¢. By Corollary 2.2, equation (2.5)
admits a unique solution in v € L*°(Q)) depending continuously on K ¢ and
hence on ¢. Clearly, u = ¢+ v is a solution of (2.1) in L?(Q).

The uniqueness of u in LP(Q) is seen as follows: If uq, uz are solutions
in LP(Q) associated to the same ¢, then u = u; — uy satisfies v = K u.
Since u € LP(Q), the smoothing property of K implies even u € L*(Q).
Uniqueness in L*(Q) yields w = 0. Therefore, u; = uz must hold in L?(Q).

Finally, we derive the comparison principle assuming G > 0. Consider
once again the auxiliary function v := v —¢. If ¢ > 0, then K¢ > 0, too.
From equation (2.5) and the first comparison principle we get v > 0 a.e. on

2. Therefore,
u=ct+v>c>0

holds true. The comparison principle is an easy consequence (put ¢ :=
¢ — ¢c3). |

So far, we have considered the integral operator K. This operator will
appear in our primal problem. Our theory is focused on the associated dual
problem, where the (formal) adjoint operator KT

T
KTty = [ [ Gleas.o e, de s (2.6)

plays a crucial role. KT is positive and has the same singularity as K.
Therefore, K behaves like K. In particular, it is a contraction for A > X,
in the norm || - ||x. It will be useful to prove the following result:
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OPTIMAL CONTROL OF LINEAR BOTTLENECK PROBLEMS 239

LEMMA 2.6. The equation

p(z, 1) :max{Qa(a@,t)—I—/tT/QG(f,x,s,t),u(f,s) d¢ ds} (2.7)

has exactly one solution p € L*(Q).

Proof. Define by Il the projection on the positive cone of L>(Q),
(I1z) (2, t) = max{0, z(z,t)} =: 2(x,t)T.
Obviously
|(Izg — Hzg) (2, 8)] < (21 — 22)(2,8)]  a.e.in @ ;

therefore, we get
T2y = Iza[[x < [[21 — 22|

by multiplying with e=** and taking the supremum over Q). The operator
T, expressed by the right hand side of (2.7),

Tp=la+K"ul*,

is a contraction in L™ (Q) endowed with || - ||, for A large enough:

(T = Tpalln = IM(a+ K py) —M(a+ K ps)|n
< 1K Tpa = KT pg|
< B = pual
\ K1 — H2(|x,

is a contraction for A > k.
Equation (2.7) reads p = T p. According to the Banach fixed point theo-
rem, this equation has a unique solution in L*(Q). O

3. TwO BASIC PRIMAL PROBLEMS

From now, we assume that G/(z,&,t,s) > 0on Q? x D and p > N/2+ 1.
Let us discuss two main choices of (P).

We consider the problems (Py1), (P2),

max/ a(z,t) u(z,t) de dt

(P1) u(w,t)Qg [c+ Kul(z,t) a.e. in @,
u(z,t) >0 a.e. in @,
max/ a(z,t) u(z,t) de dt

(P2) 9 - :
u(z,t) <[+ Kul(z,t) a.e. in @,
0 < u(z,t) <d(z,t) a.e. in .

where a, ¢ and d are L*°(Q)) functions.
We start with (P;). Let us define u. by

U, = ¢+ Kue. (3.1)

Note that . is bounded and measurable according to Corollary 2.2.
THEOREM 3.1. (P1) has a solution u if and only if u. > 0.
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240 M. BERGOUNIOUX AND F. TROLTZSCH

Proof. If u. > 0, then the feasible domain for (Py) is non empty. All feasible
elements u € LP(Q) satisfy u < u. by the second comparison principle of
corollary 2.5, and we know u. € L>(Q). Moreover, u > 0 follows from the
constraints, too. This implies the L*-boundedness of u by [|u.||r~(q)- So
the feasible set is bounded, closed and convex in all (reflexive) LP-spaces for
14 N/2 < p < co. The existence of @ € LP(Q) is an immediate conclusion.
Of course, u belongs to L™ (Q).

On the other hand, if u. is not equal or greater than 0, then the feasible
set is empty. This follows again from the comparison principle. O

THEOREM 3.2. If u. > 0 (that is, if the feasible set is non empty) and if
d > 0, then (P3) has a solution.

The result is shown in the same way as for the preceding one.

4. DuAL PROBLEM TO (P4)
Let us extend the feasible set of (Py) from L™>(Q) to LP(Q) (p > N/2+1).

Any feasible solution u of (Py) satisfies 0 < u < u., where u, is defined in
(3.1). Therefore, all feasible solutions of LP(()) belong automatically to
L>(Q), and the feasible set is independent of this extension to L?(Q).
Using standard techniques for constructing dual problems (cf. our dis-
cussion in section 6), we consider (Py) in LP(Q) and get the following dual

problem in L%(Q).

min/ clz,t) plz,t) de dt
Q

(D) p(z,t) > [a+ KT,u](ac,t) a.e. in @,
plz,t) >0 a.e. in @,

where g € L9(Q), p~' + ¢! = 1, and KT is the integral operator defined
by (2.6).

The kernel of KT satisfies the estimate (1.1), hence KT : LP(Q) — L*(Q)
forp > N/2+1, too. However, this is not true from L4(Q) to L>°(Q). On the
other hand, KT represents the adjoint operator of K : LP(Q) — L*°(Q) C
LP(Q). Therefore, KT is continuous in LY(Q) ~ LP(Q)*, as well. In view of
(1.1) and Lemma 2.1, KT is a contraction in L>°(Q), hence the equation

p=p+ K u (4.1)

has for each § € L*(Q) a unique solution p € L*(Q). Moreover, we
have uniqueness for (4.1) in L?(Q). Suppose that p € LI((Q) solves the
homogeneous equation y — K Ty = 0; we take an arbitrary v € LP(Q), then

0= /v (n— K" p)de dt = /,u(v — Kv)dz dt.
Q Q

In view of the proof of Corollary 2.5, the range of v — Kv is LP(Q)), hence
p = 0. This yields uniqueness for (4.1) in L9(Q).

REMARK 4.1. It is easy to see that the solution p* of

p(z,t) = la(z, )|+ (K p)(x,t)  ae. in Q, (4.2)

ESAIM: Cocv, JUNE 1998, VoL. 3, 235-250



OPTIMAL CONTROL OF LINEAR BOTTLENECK PROBLEMS 241

is a feasible and essentially bounded solution of (D) (this follows from the
corollaries of section 2.)

THEOREM 4.2. [fc >0, then (D1) has at least one optimal solution i given
by equation (2.7).

Proof. Let fi be the unique solution of (2.7). Suppose that p € L?(Q) is any
other feasible element for (Dy) (different from ). Then

p>a+ KT ae. in Q

and, of course, p > 0. Next, we construct a sequence g > pg > --- as
follows: we put py = p € L9(Q) and define

py = max{0, a+ Ky}

A simple discussion yields py < gy a.e. in . Then the positivity of KT
implies K Ty < KT py, and we get

to > a+ KT,ul > a+ KT,ug a.e. on ().

Thus po is feasible, and py < py holds on ). Repeating this process, one
constructs a non-increasing feasible sequence {u,}, which has to be point-
wisely convergent towards some i > 0, i.e.

lim g, (z,t) = pi(z,t) a.e. on Q.

n——+oo

Therefore, {p,(z,t) — fi(z,t)}? tends pointwisely to zero, too. Moreover,
this sequence is bounded by (u1(z,t))? € L*(Q). The Lebesgue dominated
convergence theorem yields that (u — )7 tends to zero in L'(Q), hence pu,
tends to  in LI(Q).

K7 is continuous in L(Q) so that a + K"y, — a+ K" in LY(Q).
Passing to the limit in

tn, = max{0,a+ KT,un_l}
(the right hand side is a continuous mapping in L%(Q))) gives
fi = max{0,a+ K ji}.
We are able to conclude fi € L*°(()). This is seen from the equation

e, t) = pla,t) ale, ) + B, t) (KT ) (x, 1),

where f(z,t) = 0 for fi(z,t) = 0 and SB(z,t) = 1 for f(z,t) > 0. This
equation is of the type discussed in section 2, where ¢ = fa € L*(Q) (the

new kernel G = (G satisfies the estimate (1.1) too and G > 0.) Hence
g € L(Q). By uniqueness in L°(Q) we have i = ji; moreover u > [i.
Consequently p > g holds for all feasible solutions, and

/ c(z,t) p(z,t) do dt > / c(z,t) plz,t) de dt
Q Q

follows from ¢ > 0. O
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242 M. BERGOUNIOUX AND F. TROLTZSCH

5. DUAL PROBLEM TO (P3)

In the case of (P;) we obtain the dual problem

min/@[ c(a,t) py(x,t) +d(z,t) po(z,t)] de dt
P2 (@ 0) + oo, 0) > o+ KT ] 1) ace. in Q.
pi(z,t) >0, ,ug(x t)>0 a.e. in @,

where the unknown functions u;, ¢ = 1,2 belong to L%(Q).
From now, we assume ¢ > 0 and d > 0.

LEMMA 5.1. For any feasible pair of (D3) having the objective functional
value v, there exists another feasible pair (jiy, jiz) such that

fi1 + fio = max{0,a+ K i} (5.1)
and the associated value is not greater than v.

Proof. Let (p1, pt2) be afeasible pair with value v for the objective functional.
Then we know

w1 + po > max{0,a+ KT,ul}.
Once again, we define decreasing sequences{uy }, {15} as follows:

=g, =12,
pit st = max{0,a+ KTpih =12,

More precisely, assume that pf > 0 and p4 > 0 have been constructed as
above and satisfy

ph 4 ph > max{0,a+ K put} =v" > 0.
We set ,u?"'l =a"u?, i =1,2, where
0 if v*(2,t) =0,
an($7t) = I/n($,t)
TRENGESTIERY
Thus 0 < o™ (z,t) < 1 and we have 0 < ,u?"'l < . The very choice of o”
gives T > 0and pf it = " = max{0, a+ K Ty} }. The positivity of

K and 0 < pt! < pf yield that max{0, a4 KT up} > maX{O a+ KTpitt
and

otherwise.

i st > max{0,a+ KTt} = 0"t > 0.
Passing to the limit along the lines of the last proof, we get
lim p? = f; in the sense of L%(Q)

n— 0o
and
: noo__ : T, n
nh_)rréol/ = nh_}rréo max{0,a+ K pu7}
= max{0,a+ K" fi;} in the sense of L7(Q).
Moreover,

fiy + fiz = max{0,a+ K " i }.
Clearly, v < v holds for the value of the objective functional as ¢ > 0 and
d>0. O
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OPTIMAL CONTROL OF LINEAR BOTTLENECK PROBLEMS 243

So far, we have shown comparison principles in LP(Q),p > N/2+ 1. Let
us now add a third conclusion for LI(Q).

LEMMA 5.2. If a > 0 is given in LY(Q) and p € L1(Q) is the solution of
p=a+ K, (5.2)
then > 0 holds a.e. on Q.

Proof. This is shown as follows: define

M™ = {(z,1) € Q | u(z,1) <0}

and
_ 1 if (e t) e M7,
f=xm-= { 0 otherwise.

Let v € L*(Q) be the unique solution of v — Kv = . By the extended
comparison principle we have v > 0. Now multiply (5.2) by v and integrate
over (). Then

/ alz, t)v(z,t) de dt = /(,u(w,t) — KT p(z,0))v(z,t) de dt
Q Q
= /Q(v(ac,t) — Kv(z,t)p(x,t) de dt
= / ) p(x,t) de dt.

From a,v > 0 we conclude that (M™) has a null measure; hence p > 0 a.e.

on (). O

THEOREM 5.3. Problem (D) admits at least one solution (jiy, jiz) € L™ (Q)%

Proof. Owing to Lemma 5.1 we may restrict ourselves to the set of all pairs
(1, 2) € L4(Q)? such that

p1 4 prz = max{0,a+ K"y} and p; > 0,5 =1,2.
Therefore,
iy < iy 4 e < lal + KTy
So we have u; < |a| + KT py. Consider the solution p, of

pa(z,t) = |a(z, )|+ (K T pa)(2,t)  aee. in Q. (5.3)

This solution belongs to L>°(Q) ( applying Lemma 2.1 to KT as an operator
from LP(Q) to L>°(Q)) and is unique in L%(Q) ( see the discussion of (4.1)).
We have

p=a+ K,

where a(z,t) < |a(z,t)|and o € LI(Q). The comparison principle of Lemma

5.2 yields p11 < i, hence 0 < py implies g € L*(Q).

Therefore o is uniformly bounded as well. In this way we may restrict to a

weakly compact subset of L?((), which is uniformly bounded. We complete

the proof by standard arguments. O
ESAIM: Cocv, JUNE 1998 VoL. 3, 235-250
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We are able to check the existence of solutions to the dual problem (D)
for some other meaningful choices of the constraints of (P), too; consider
the problem

max | au dzx dt,
(Ps) /Q
d1 S u S dg.
This case is obtained for ¢; = —o0, ¢ = co. The dual is
min/ (dapig — dipy) da dt,
D Q
(D2) H2 — H1 = &,
> 0,i=1,2.

An easy exercise gives the solution gy = a™, uy = a™ for (D3). The choice
dy = —00, dy = oo defines

max | au dzx dt,
(Pa) /Q
g <u—Ku<ce
having the dual problem
min/ (dapig — dipy) da dt,
Q

(I = K)(p2 — 1) = a,
pe>0)i=1,2,

(D4)

Problem (P;) is transformed on substituting v = v — Ku to one of the type
(P3). We obtain v = Rv with R =37 ) K™. The transformed problem is

max/ av dz dt, a1 < v <oy,
Q

with @ = RTa. The solution py = a@~, uy = at of the associated dual
problem is easily seen to solve (Dy), too.

6. THE DUALITY RELATION

The discussion of the duality between (P) and (D) is not yet complete. We
have only shown that under certain assumptions the dual problem admits a
solution pi. To ensure that g is a Lagrange multiplier associated to a solution
of (P), we need additionally the strong duality relation, that is the equality
of primal and dual optimal value. We shall prove that this relation holds
true in all of our cases of interest. To this aim, we briefly sketch some main
ideas of duality for linear programs, which are known from the papers [13],
[14] and the general expositions in [1], [2].

Let X and Y be two real Banach spaces with nonempty convex closed
cones Kx C X and Ky C Y. Let us denote by X', Y’ the associated dual
spaces. In X we introduce a partial ordering >y by 2z >x 0 if and only if
x € Kx. Analogously, >y is defined in Y. In what follows, we shall freely
use (-, -) to denote the pairing between X and X’ or Y and Y’. The dual
cone K}'E is defined by

K{={we X'|(w,2)>0 Va:a>x0},
ESAIM: Cocv, JUNE 1998, VoL. 3, 235-250
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and K is introduced analogously in Y’. In X', Y, partial orderings are
defined by these cones K;E and K{'}. Finally, let fixed elements a € X',
c € Y, and a linear continuous operator A : X — Y with adjoint A’ be
given.

The abstract primal problem is

max(a, z)
(P) Ar <y c
x>x 0.
In what follows, we often omit the indexed space in the partial ordering,

since the meaning of the ordering is clear from the context. On using the
Lagrange function £L: X xY' = R

,C(x,,u) = <a7 $> + <:u7 c— A$>7
the primal problem can be expressed in the form to find the value

v=-sup inf L(x, ).
1’218 120 ( Iu)

The dual problem is obtained in Y’ by Lagrange duality, that is by reversing
the order of sup and wn f:

(D) v' = inf sup L(z, ) = inf {<,u, ¢) + sup{a — A'p, x>}
120 £>0 120 >0

The last supremum is zero, if @ — A’y < 0, otherwise +oc. Hence (D) is
nothing else than

min (g, ¢)
(D) Alp>xra
w2y 0.

Let & be optimal for (P). Then g is an associated Lagrange multiplier if
and only if the pair (z, i) is a saddle point of L,

Lle,B) < L@, 5) < L@ )

for all # > 0, p > 0. A necessary and sufficient condition for (z, i) to be
a saddle point is that z solves (P), i solves (D), and the strong duality
relation v = v’ holds true.

Let us define by P(c) and D(a) the feasible sets of (P) and (D), respec-
tively, that is

Ple) = {z€X|2>0,Az<¢}
D(a) = {peY'|p>0, A'p>a}
It is easy to check that the weak duality relation

sup (a,z) < inf (p,c) (6.1)
z€P(c) n€D(a)

always holds true. To show the strong duality relation we need the convex
cone
K(A) ={(a,d) e Rx Y |Jz > 0: Az < d, (a,z) > a}.
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THEOREM 6.1. If K(A) is closed and (P) admits at least one solution, then
the strong duality relation
max (a,z) = inf ,C 6.2
xEP(c)< > #«ED(a)<Iu > ( )
s true.
This is a standard result. We refer, for example, to [6] (the result is given for
the general convex case). It turns out that the assumptions of the theorem
are fulfilled in all of our cases of interest for (P) . Let us consider at first
our most general primal problem
max(a, u)
(P) g <u—Ku<ce
0<u<d

introduced in section 1, where (a,u) = fQ a(z,t)u(z,t) de dt. Written in
canonical form, the constraints are

u—Ku < ¢
—u+Ku < —¢
v < d
u > 0.
Moreover, we have X = LP(Q), Y = (L?(Q))> endowed with their natural

partial ordering, and
I-K
A= -I+K
1

LEMMA 6.2. K(A) is closed for the choice of (P) defined above.

Proof. Tn the abstract setting of (P) we have ¢ = (ca, —c1,d) ". Let (™, c") €
K(A) be given such that (", ") — (a,¢) in R x Y as n — oo. Then there
is a sequence {u"} such that

Au" < ", u >0, (a,u”) > a".

This sequence is bounded. Here, this follows from 0 < «” < d™. Moreover,
X is reflexive. Therefore, we may select a weakly converging subsequence
and can assume that u” — 4. Convex closed cones are weakly closed, hence

At < e, >0, (a,u) > «a,
that is (o, ¢) € K(A). O

A study of the proof reveals that its main point is the boundedness of the
sequence {u,}. The same property holds true in the following cases of the
constraints for (P):

(i) u— Ku < ¢y, u > 0.

Here we apply the comparison principle and get u < wu., where w, is
defined as in section 3, u. — Ku. = c3. Convergence of ¢} implies that of
Ue,, » hence boundedness of u,,.

(ii) 1 <u— Ku, u < d, u > 0.

Boundedness is trivially satisfied.

(iii) e <u— Ku < ¢3.
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This case does not instantly fit into the abstract scheme, as the constraint
w > 0 is missing. If we define Ky = X, then we can add formally u >x 0
without changing the constraints. Here, the solution u is bounded by the
two solutions of the equations v — Ku = ¢; and u — Ku = ¢ (comparison
principle). Therefore, the boundedness needed in the proof is fulfilled, too.
Summarizing, the duality relation holds true in all our cases of interest.

7. A CLASS OF LINEAR PARABOLIC CONTROL PROBLEMS WITH
BOTTLENECK CONSTRAINTS

Consider the following linear parabolic control problem

max (/Qag(x)y(x,T) dx—|—/ ag(z, )y(e, 1) do dt

—|—/Eag(x,t)y(x,t) do df—l—/@au(ac,t)u(x,t) d dt)

(P) subject to
yr + div(AVy) + Ly = (,u in Q,
dyy+byy=0 on X,

y(0) =0 in Q,

0 <wu(z,t) <d(z,t) inQ,

u(, 1) < cla, 1) + y(a,1) i Q.

In this setting, Q is an open bounded domain of RV with boundary T' and
T is a nonnegative real number. We set Q = Qx]0,T[; ¥ = I'x]0, T[ is the
lateral boundary of @) and @,y denotes the outward normal derivative on I'.
The (data) functions aq, ag, ax, @y, ly, by, by, d, and ¢ are bounded and
measurable on their domains. We assume ¢, ,,, b, > 0. In addition, I' and
the coefficients of the (symmetric uniformly negative definite) matrix A are

supposed sufficiently smooth such that the associated Green’s function G
exists. Then the weak solution of the PDE is given by

y(z,t) :/0 /Qé(x,f,t,s)ﬂu(f,s)u(f,s) d¢ ds = [Ku](z,t). (7.1)

G is known to be nonnegative in view of the maximum principle and satisfies
(1.1). The objective admits the form

/OT/Q“(W)U(M) dx dt,

a(z,t) = (/Qé(x,f,t,s)ag(f,s) df—l—/T/Qé(x,f,t,s)aQ(f,s) d¢ ds

where

_|_/T/Fé(x7§7t73)az(f,s) do ds)ﬁu(x,t)—l—au(x,t).

This follows from the Fubini theorem. On using the integral operator K
defined in section 2, the constraints read

u<c+ Ku, 0<u<d.
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Therefore the above problem (P) fits in (P;) defined in Section 3. According
to (Dy), the corresponding dual problem has the constraints pq > 0, ugy >
0, i1+ ptg > a+ K Ty, Our theory allows to consider (Dy) in L (Q)2. The
function

T o~
st = [ [ Gleasti(e s deds = K
t Q
solves the adjoint parabolic equation
—pr +div(AVe) + lyp =

in @, subject to homogeneous boundary conditions and ¢(7) = 0. Sub-
stituting ¢ for K Ty, the dual problem admits the form of a dual optimal
control problem with constraints of bottleneck type,

min (/Q c(w, (2, 1) do dt—|—/Qd(x,t),u2(x,t) da dt)

subject to

(D) —¢r +div(AVe) + Lo =y in Q,
dvp+byp=0 on 3,

e(T) =0 in €,

:ul(xvt) > 07“2($7t) >0 in Q7

pr(z,t) + po(z,t) > alz,t) + p(z,t) in Q.

Invoking our theory we obtain the following result:

THEOREM 7.1. For any solution w of (P) (in L*(Q)), the dual problem has
at least a solution (fiy, jiz) which belongs to L>°(Q)?. Moreover ji;,i = 1,2
are the Lagrange multipliers associated to 1.

8. EXTENSION TO BOUNDARY CONTROL PROBLEMS

We have concentrated so far on a distributed control problem aiming to
simplify the presentations of the main ideas. Anyway, we may give some
hints for a possible extension to the study of boundary control problems.
Of course, the case we have presented in the previous section is a particular
case of the one (roughly) described in this section. However, we decided to
discuss first a simpler application to make the presentation clearer.

A study of our techniques immediately reveals that problems of the type

max (/Q al(w,t)u(w,tt) dx dt—l—/zag(ac,t)v(x,t) do dt)
G d¢ d
u(x,t>3cl<x,tt>+/o/g (.6t 9Ju(€,s) d ds
G do ds a.e. i

[ 20 16, ) s e @

veZale )+ [ [ Galeg s, de ds

t
—I—/ /Gzz(x,&,t,s)v(f,s) do ds a.e. on X,
0 JI
0 S u(x,t) S d1($7t),
0 S U($7t) S d2($7t)7
can be treated analogously. Here aq,¢1,dy € L™(Q),az,c2,dy € L>(X)

and nonnegative kernels G;; : D — R are given satisfying the same type
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of assumptions imposed on G in section 1. ¥ = I' x (0,7) is the lateral
boundary, and do denotes the surface measure. We have to assume non-
negativity of ¢;,d;, 2 = 1,2. The boundary integral operators defined by
Gig,1= 1,2, transform L?(X) into L>(Q) and L*°(X) respectively provided
that p > N + 1, where N= dim Q (see Troltzsch [11]). Hence the primal
problem (P) can be defined in LP(Q)) x LP(X) for p > N +1. The associated

operator K,
. Kiju+ Kipv
Ko = (et ) o,

is to be regarded as linear continuous operator in L?(Q) x LP(X). lts adjoint
operator is defined in L9(Q) x L(X) by

K™ (1, 2) (2, 1) =

T T

// Gi1(& . s, t)u(€, s) d ds—l—//Ggl(f,x,s,t)z(f,s) do ds
t JQ t JI
T T

// Gra(&, 2, s, t)u(€, s) d ds—l—//Ggg(f,x,s,t)z(f,s) do ds
t JQ t JI

The symmetry of the exponential estimate (1.1) shows that
K™ : LP(Q) x LP(X) — L™=(Q) x L™ (%)

continuously, for p > N 4 1 as well. The dual problem is obtained in
LH(@Q) x L9(X) by

min (/ (crpr + dypg) do dt + / (221 + dazg) do dt)
%
subject to ¢
(D) p1 A+ po > ay + Kijp + K32,
2+ 29 > ay + Ky + K32,
pi = 0, 1=1,2,
%> 0,i=1,2.

Introducing an equivalent norm, K and K™ are seen to be contractions in
L. Hence the theory of the preceding sections can be developed analo-
gously.

We obtain optimal solutions of (D) in L>(Q)? x L>(X)?, if the functions
¢, di,t = 1,2, are nonnegative. These results can be used to handle parabolic
control problems of the type

max (/ aqy(T) dac—l—/ agy dx dt—l—/ any do dt
Q 0 5

—I—/ a,u dx dt—l—/ a,v do dt)
Q b
subject to

yr + div(AVy) + b1yy = byu in Q,

dvy + boyy = byv on X,

y(0) =y, in Q,

0 S u(x,t) S dl in Q70 S U($7t) S d2 on 27
uw<ecr+yin Q,u(z,t)<cz+y on M.

Here,

Gll = G21 = bu(fvs)G($7€7t78)7 G?l = G22 = bv(fvs)G($7€7t78)
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250 M. BERGOUNIOUX AND F. TROLTZSCH

where ¢ = G(z,&,t, s) is the Green’s function associated to the parabolic
initial-boundary value problem. G satisfies the estimate (1.1) (see [11] and
the references therein). The technique of our paper applies to show the
existence of bounded and measurable Lagrange multipliers associated to the
state constraints. We leave the details to the reader.
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