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PARTIAL EXACT CONTROLLABILITY

AND EXPONENTIAL STABILITY IN

HIGHER�DIMENSIONAL LINEAR THERMOELASTICITY

WEIJIU LIU

Abstract� The problem of partial exact boundary controllability and

exponential stability for the higher�dimensional linear system of ther�

moelasticity is considered� By introducing a velocity feedback on part

of the boundary of the thermoelastic body� which is clamped along the
rest of its boundary� to increase the loss of energy� we prove that the en�

ergy in the system of thermoelasticity decays to zero exponentially� We
also give a positive answer to a related open question raised by Alabau
and Komornik for the Lam�e system� Via Russell�s �Controllability via

Stabilizability� principle� we then prove that the thermoelastic sys�
tem is partially controllable with boundary controls without smallness

restrictions on the coupling parameters�

�� Introduction

Let � be a bounded domain in Rn with smooth boundary � � �� of class
C�� and consider a n�dimensional linear� homogeneous� isotropic� and ther�
moelastic body occupying � in its non�deformed state� For a material point
with con�guration x � 	x�� � � � � xn
 at time t� let u	x� t
 � 	u�	x� t
� � � � �
un	x� t

 and �	x� t
 denote the displacement and temperature deviation� re�
spectively� from the natural state of the reference con�guration� Then u and
� satisfy the system of thermoelastic equations

��
�
u�� � ��u� 	�� �
rdiv u� �r� � 
 in �� 	
��
�
�� ��� � �div u� � 
 in �� 	
��
�
u	

 � u�� u�	

 � u�� �	

 � �� in ��

	���


in the absence of external forces and heat sources� where �� � 	 
 are
Lam�e�s constants and �� � 	 
 the coupling parameters� By � we denote the
derivative with respect to the time variable� �� r� div denote the Laplace�
gradient� and divergence operators in the space variables� respectively� u	

�
u�	

 and �	

 denote the functions x � u	x� 

� x � u�	x� 

 and x �
�	x� 

� respectively� For the derivation of 	���
� we refer to ���� and ��
��

The goal of this paper is to study the exponential stability and partial
exact controllability of system 	���
� Our main results will be presented in
Section � and proved in Section ��
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�� WEIJIU LIU

Before we give our main results� let us brie�y describe the existing liter�
ature�

Under the Dirichlet�Dirichlet boundary conditions

u � 
� � � 
 on � � 	
��
� 	���


the thermoelastic energy of 	���
 can be de�ned as

E	t
 �
�

�

Z
�

h
ju�	x� t
j� � �jru	x� t
j�

� 	�� �
jdivu	x� t
j� � �

�
j�	x� t
j�

i
dx�

	���


Here we have used the notation

jru	x� t
j� �
nX

i�j��

j�ui
�xj

j��

It is easy to verify that the energy E	t
 decreases on 	
��
� but� in general�
does not tend to zero as t��� In fact� it has been shown by Dafermos in
his pioneering work ��� that the energy of every solution of 	���
 and 	���

converges to zero as t� � if and only if � satis�es the following condition�

	H�
 There is no non�trivial eigenfunction 
 � 
	x
 of the Lam�e system

���
 � 	�� �
rdiv
 � ��
 in �� 
 � 
 on ��

such that div
 � 
 in ��
In ���� it was pointed out that 	H�
 holds �generically� for smooth do�

mains� It was also shown that 	H�
 fails when � is a ball 	see ����
�
Subsequently� the attention was paid to the problem of the uniform ex�

ponential decay rate of energy� In ����� Hansen ���� made the �rst attempt
on this problem by considering the one dimensional linear thermoelastic
system subject to Dirichlet�Neumann or Neumann�Dirichlet boundary con�
ditions� Applying the analysis of nonharmonic Fourier series� he succeeded
in establishing the uniform exponential decay rate�

Hansen�s results rely signi�cantly on the boundary conditions of Dirichlet�
Neumann or Neumann�Dirichlet type� The case of Dirichlet�Dirichlet type
was left as an open problem� Later� by using di�erent methods� Kim ����
and Liu and Zheng ���� independently solved this problem� showing the ex�
ponential decay under Dirichlet�Dirichlet boundary conditions� While Kim
used the energy method� multiplier techniques and compactness properties�
Liu and Zheng�s method was based on an abstract theorem about the expo�
nential stability of semigroups�

Applying the abstract exponential stability theorem mentioned above�
Burns� Liu and Zheng ��� further considered all other possible boundary
conditions for the ��D system of thermoelasticity 	such as stress free at both
ends and stress free at one end
 and showed that the semigroups associated
with these boundary conditions are also exponentially stable�
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PARTIAL CONTROLLABILITY AND STABILITY IN THERMOELASTICITY ��

In summary� the problem of exponential decay rate of energy for the one�
dimensional linear thermoelastic system has been completely solved by now�

For the higher�dimensional linear thermoelastic system� the problem is
much more complicated� Since the total energy in higher�dimensional linear
thermoelasticity does not always decay to zero� one has to try to partition
the total energy into a dissipative part and a conservative part�

The question of partition of the energy was �rst studied by Lax and
Phillips ���� for a classical solution of the wave equation� The �rst work
about the partition of the energy in the linear thermoelasticity is due to
Dassios and Grillakis ��
�� who studied how the energy associated with the
longitudinal and thermal wave is divided into kinetic� strain� and thermal
energy in the case � � R

�� They concluded that all three parts of the
energy decay to zero as t� �� at a polynomial rate� Further� Rivera ����
studied the decomposition of the displacement vector �eld in Rn 	n 	 �
 into
two parts� One of them is the solenoidal part� namely� the nondissipative
component that conserves its energy and the other the dissipative component
that decays to zero as fast as t�n�� when t approaches in�nity�

For bounded domains� Chirita ��� proved that the mean thermal energy
tends to zero as time goes to in�nity and that the asymptotic equiparti�
tion occurs between the Ces aro means of the kinetic and strain energies�
This shows that thermal e�ects do not in�uence explicitly the asymptotic
equipartition of the mean kinetic and strain energies� Chirita�s method relies
on the Lagrange�Brun identities�

In special situations where the restoring force is proportional to the vector
velocity of the displacement vector �eld� Pereira and Menzala ���� proved
that in a bounded domain the kinetic� strain and thermal energies tend to
zero exponentially as t� ���

Recently� Lebeau and Zuazua ���� gave a su!cient and necessary condi�
tion ensuring that the energy tends to zero exponentially as t � �� in a
bounded multi�dimensional smooth domain �� This condition is written in
terms of the dynamics of the rays of geometric optics� As a consequence of
the result of ����� it follows that when � is a bounded smooth convex open
set� the energy does not decay exponentially to zero�

In addition� there has been a lot of work on von K�arm�an�s system of
thermoelastic plates� For details� we refer to ���� �"�� ��
�� ����� ����� ��"��
����� �����

While there has been extensive work on the stabilization of the linear
thermoelasticity� relatively little is known about the controllability�

The earliest results appear to be in the paper ��
� of Narukawa� who
proved the partial exact boundary controllability for the general form of
the thermoelastic system on a bounded domain � in Rn� Later� this result
was improved by Lions ��
� p� ���"
� by introducing the Hilbert Uniqueness
Method� In both Narukawa and Lions� results� only the displacement is
controlled� disregarding the values of the temperature� This is the so�called
partial controllability property� Such a partial controllability property was
also proved for von K�arm�an�s system of thermoelastic plates 	see ��
�� �����
����
� This drawback 	i�e�� lack of information on the controllability of the
temperature
 was avoided by Hansen ����� who showed that� for at least
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the one�dimensional thermoelastic system� exact controllability of both the
displacement and temperature is possible by only controlling the thermal or
mechanical component on the boundary in the case where u and � satisfy
the Dirichlet�Neumann or Neumann�Dirichlet boundary conditions and the
coupling parameters satisfy some further restrictions� Hansen�s results were
proved by making use of the moment problems and the theory of nonhar�
monic Fourier series� It seems that Hansen�s method is not applicable to
the multi�dimensional space case� Thus� the problem of exact controllabil�
ity of both the displacement and temperature is much more complicated
in this case� In order to attack this problem� Zuazua ���� recently intro�
duced the concept of exact�approximate controllability and made signi�cant
progress� He proved that� if T is large enough� then the thermoelastic system
is exact�approximately controllable with a control supported in a neighbor�
hood of the boundary of �� i�e�� the displacement is shown to be exactly con�
trollable and the temperature approximately controllable� The method of
Zuazua combines multiplier techniques� compactness arguments and Holm�
gren�s Uniqueness Theorem among other tools� More recently� Teresa and
Zuazua ���� proved that the same kind of results hold for thermoelastic
plates� In addition� Lebeau and Zuazua ��"� proved that the system of lin�
ear thermoelasticity with periodic boundary conditions is null controllable
with a volume force located in a subset satisfying the geometric control con�
dition of ���� Their method of proof is based on a spectral decomposition of
the system and its adjoint on the basis generated by the eigenfunctions of
the Laplacian� The spectrum is split into a parabolic and a hyperbolic part�
and then the techniques of ��� and ���� are combined�

In this paper� we establish a su!cient condition which guarantees the
exponential decay rate of the energy by means of an additional boundary
damping� It is well known that the reason why the energy E	t
 does not
tend to zero as t� � is that the total energy is not dissipated completely
in the form of thermal energy 	see ���� for more details
� Thus we introduce
here a velocity feedback on part of the boundary of the thermoelastic body�
which is clamped along the rest of the boundary� to increase the loss of
energy�

In order to state the boundary velocity feedback� we set

�� � fx � � � m	x
 � �	x
 � 
g� 	���


�� � fx � � � m	x
 � �	x
 	 
g� 	���


where m	x
 � x � x� � 	x� � x��� � � � � xn � x�n
 for some x� � Rn� � �
	��� � � � � �n
 denotes the unit normal on � directed towards the exterior of
� and

m � � � m	x
 � �	x
 �
nX
i��

	xi � x�i 
�i�

�� is assumed either to be empty or to have a nonempty interior relative to
�� Note that assumptions 	���
 and 	���
 imply that the domain � is simply
connected and star�shaped with respect to x� � � or � � �� � ��� both
�� and �� being star�shaped with respect to x�� Especially� the domain �
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can be a bounded smooth convex open set� As mentioned before� for the
convex domain� Lebeau and Zuazua ���� has showed that the energy does
not decay exponentially to zero in general� Thus� the feedback is necessary
for this case�

The boundary velocity feedback can be stated as follows

�����
����

� � 
 on � � 	
��
�
u � 
 on �� � 	
��
�

�
�u

��
� 	�� �
div	u
�

�am � �u�m � �u� � 
 on �� � 	
��
�

	��"


where a � a	x
 is a given nonegative function on �� with

a	x
 � C�	��
� 	���


It is clear that if m	x
 � �	x
 	 
 on �� for some 
 	 
 then a	x
m	x
 � �	x

can be any nonnegative function as we can take a	x
 � f	x
�	m	x
 � �	x

�
f	x
 being any nonnegative function� It is well known that the boundary
velocity feedback is an e�ective mechanism to increase the loss of energy� and
has been extensively used for the wave equation ���� ��"�� ����� elastodynamic
systems ���� ���� and viscoelasticity ����� �����

We will prove that the energy of the solutions of 	���
 and 	��"
 decays to
zero exponentially as t�� if A � max

x���
a	x
 is small enough 	see Theorem

��� below
�
In the special case of the Lam�e system

�������
������

u�� � ��u� 	�� �
rdiv u � 
 in �� 	
��
�
u � 
 on �� � 	
��
�

�
�u

��
� 	�� �
div	u
�

�am � �u �m � �u� � 
 on �� � 	
��
�
u	

 � u�� u�	

 � u� in ��

	���


the exponential stability still holds even though A is large� This result
answers an open question raised by Alabau and Komornik ����

On the other hand� as the consequence of the uniform stabilization� we
use the �Controllability via Stabilizability� principle to prove the partial ex�
act boundary controllability for the thermoelastic system without smallness
restrictions on the coupling parameters � and ��

The main results of this paper are presented in Section � and proved in
Section �� The methods of our proofs are based on multiplier techniques�
the asymptotic property of the semigroups and Russell�s �Controllability via
Stabilizability� principle�

�� Main results

In what follows� Hs	�
 denotes the usual Sobolev space 	see ���
 and k � ks
denotes its norm for any s � R� For s 	 
� Hs

�	�
 denotes the completion of
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C�� 	�
 in Hs	�
� where C�� 	�
 denotes the space of all in�nitely di�eren�
tiable functions on � with compact supports in �� LetX be a Banach space�
We denote by Ck	�
� T ��X
 the space of all k times continuously di�eren�
tiable functions de�ned on �
� T � with values in X � and write C	�
� T ��X

for C�	�
� T ��X
�

Let a	x
 be the nonnegative function given in 	��"
 satisfying 	���
 and
� � 	��� � � � � �n
 the unit normal on � directed towards the exterior of ��
Suppose that �� and �� are given by 	���
 and 	���
� respectively� and ��
either is empty or has a nonempty interior relative to �� Set

H�
�� 	�
 � fu � H�	�
 � u � 
 on ��g�

H�
��
	�
 � fu � H�	�
 � u � 
 on ��g�

V � f	u� v
 � 	H�	�

n � 	L�	�

n �

Z
�

m � �ud� �

Z
�

vdx � 
g�

W �

�
V� if �� � 
 and a	x
 � 
�
	H�

��
	�

n � 	L�	�

n� otherwise�

H � W � L�	�
�

Further� if �� � 
 and a	x
 � 
� we set

D�� �
n
	u� v� �
 � � � 	H�	�
 �H�

� 	�

�

	u� v
 � 		H�	�

n � 	H�	�

n � V�

�
�u

��
� 	�� �
div	u
� � am � �u�m � �v � 
 on ��

o
�

Otherwise� we set

D�� �
n
	u� v� �
 � � � 	H�	�
 �H�

� 	�

�

	u� v
 � 	H�
��	�



n � 	H�
��	�



n�

�
�u

��
� 	�� �
div	u
� � am � �u�m � �v � 
 on ��

o
�

Note that the norm on W

k	u� v
kW �
��
�

Z
�

��jruj� � 	�� �
jdiv	u
j� � jvj��dx

�
�

�

Z
��

am � �juj�d�
���� 	���


is equivalent to the usual one induced by 	H�	�

n � 	L�	�

n� When
proving this� the only delicate case is when �� � 
 and a	x
 � 
� We argue
by contradiction� If the norms are not equivalent� then there is a sequence
f	un� vn
g � V such that

Z
�

�jrunj� � junj� � jvnj��dx � �� 	���
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and Z
�

junj�dx 	 n

Z
�

��jrunj� � 	�� �
jdiv	un
j� � jvnj��dx� 	���


Then� we have

lim
n��

Z
�

jrunj�dx � 
� 	���


lim
n��

Z
�

jvnj�dx � 
� 	���


Moreover� by 	���
� we may assume that fung converges to u weakly in
	H�	�

n� Since the injection of 	H�	�

n into 	L�	�

n is compact� we
may assume that fung converges to u strongly in 	L�	�

n� Since in the
sense of distribution

lim
n��

�un

�xi
�

�u

�xi
�

	���
 implies that
�u

�xi
� 
�

Thus
u � C 	constant
�

Because 	un� vn
 � V � we have

Z
�

m � �und� �

Z
�

vndx � 
� 	��"


By 	���
� we deduce that

lim
n��

Z
�

vndx � 
�

It therefore follows from 	��"
 that

lim
n��

Z
�

m � �und� � 
�

On the other hand� by 	���
 and the fact that fung converges to C strongly
in 	L�	�

n� we can deduce that fung converges to C strongly in 	H�	�

n�
Thus� by the trace theorem� we have

C

Z
�

m � �d� � lim
n��

Z
�

m � �und� � 
�

This shows that C � 
� Consequently� it follows from 	���
 and 	���
 that

lim
n��

Z
�

�jrunj� � junj� � jvnj��dx � 
�

which is in contradiction to 	���
�
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If a	x
 
� 
� the proof is similar� If �� 
� 
� this is just the consequence of
Poincar�e inequality 	see ��� p� ����
�

In the sequel� we use the energy norm on H�

k	u� v� �
kH �
��
�

Z
�

��jruj� � 	�� �
jdiv	u
j� � jvj� � �

�
j�j��dx

�
�

�

Z
��

am � �juj�d�
���� 	���


for 	u� v� �
 � H� which is equivalent to the usual one induced by 	H�	�

n�
	L�	�

n � L�	�
�

We consider the thermoelastic system with a velocity feedback�

�����������
����������

u�� � ��u� 	�� �
rdiv u� �r� � 
 in �� 	
��
�
�� ��� � �div u� � 
 in �� 	
��
�
� � 
 on �� 	
��
�
u � 
 on �� � 	
��
�

�
�u

��
� 	�� �
div	u
�

�am � �u�m � �u� � 
 on �� � 	
��
�
u	

 � u�� u�	

 � u�� �	

 � �� in ��

	���


It is well known that problem 	���
 is well�posed 	see ��
�
� In fact� the
system generates a strongly continuous semigroup S	t
 in H� This has been
proved in ���� for the more general case of thermoviscoelasticity� However�
the case �� � 
 and a	x
 � 
 is worth discussing in more detail� Indeed�
from previous articles published in the literature� one may think that system
	���
 generates a semigroup in the following space with zero average�

H� �
n
	u� v� �
 � 	H�	�

n � 	L�	�

n � L�	�
 �

Z
�

u	x
dx �

Z
�

v	x
dx � 

o
�

Actually this is a mistake� To see this� we de�ne the function f	t
 by

f	t
 �

Z
�

u	t
dx�

Take 	u�� u�� ��
 � H� such that

Z
�

m � �u�d� 
� 
� 	���


and let u� � be the solution of 	���
 corresponding to this initial data� We
claim that Z

�

m � �u�	t
d� 
� 
� 	���



If this is not true� then
R
�m � �u	t
d� is constant in time� In addition� we

can show that the energy k	u	t
� u�	t
� �	t

k�H decays to zero exponentially
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as t � �� Consequently�
R
�
m � �u	t
d� also decays to zero exponentially

since there is a positive constant C such that

j
Z
�

m � �u	t
d�j � Ck	u	t
� u�	t
� �	t

kH�

It therefore follows that Z
�

m � �u	t
d� � 
�

which contradicts 	���
� By 	���

� we have

f ��	t
 �

Z
�

u��	t
dx

�

Z
�

���u� 	�� �
rdiv u � �r��dx

�

Z
�

��
�u

��
� 	�� �
div	u
� � ����d�

� �
Z
�

m � �u�	t
d�

� 
�

Hence�
R
� u	t
dx and

R
� u

�	t
dx are not always equal to zero along the so�
lution trajectories of 	���
� Thus� H� is not invariant under the �ow given
by 	���
� Consequently� system 	���
 does not generate a semigroup in H��

On the other hand� H is invariant under the �ow given by 	���
� In fact�
the function

g	t
 �

Z
�

m � �u	t
d� �

Z
�

u�	t
dx

is constant along the solution trajectories of 	���
� This is because

g�	t
 �

Z
�

m � �u�	t
d� �

Z
�

u��	t
dx

�

Z
�

m � �u�	t
d� �

Z
�

���u� 	�� �
rdiv u� �r��dx

�

Z
�

m � �u�	t
d� �

Z
�

��
�u

��
� 	�� �
div	u
� � ����d�

� 
�

This is why the chosen space for solving 	���
 is H�
Generally speaking� one can say that a semigroup preserves a quantity if

and only if its generator does it� More precisely� let us consider

�
u� � Au� t 	 
�
u	

 � u��

	����


on a Banach space X � where A is a unbounded linear operator on X with
the domain D	A
 and u� � X � Assume that A generates a semigroup� let
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L � X � R be a linear and bounded functional� Then� the following two
conditions are equivalent�

	i
 Lu	t
 remains constant in time for every solution u of 	����
�
	ii
 L	Au�
 � 
 for all u� � D	A
�
To see that 	ii
 implies 	i
� we �rst assume that u� � D	A
� and then

u	t
 � D	A
 for every t 	 
� Applying L to equation 	����
� we obtain

dL	u	t



dt
� L	u�
 � L	A	u	t

 � 
�

Therefore� L	u	t

 remains constant in time� If u� � X � by density� we can
show that 	i
 still holds�

For the other implication� note that Au� is the limit of 	u	t
 � u	


�t
in X as t � 
� u being the solution of the equation with initial data u��
Now� in view of 	i
� we have L		u	t
� u	


�t
 � 
 for all t� On the other
hand� this quantity should converge to L	Au�
 as t � 
� This shows that
	ii
 holds�

Note that� in our situation� the functional L is given by

L	u� v
 �

Z
�

m � �ud� �

Z
�

vdx�

Since system 	���
 generates a strongly continuous semigroup S	t
 in H�
then for every initial data

	u�� u�� ��
 � H

system 	���
 has a unique solution 	u� u�� �
 with

	u� u�� �
 � C	�
��
�H
�

Moreover� if
	u�� u�� ��
 � D�� �

then
	u� u�� �
 � C	�
��
�D��
�

In order to ensure that the solution u has su!cient regularity to perform
the integrations by parts we will do� in this paper� we suppose that

�� � �� � 
� 	����


Under this assumption� by the standard elliptic regularity properties� we
have

u � C	�
��
� 	H�	�

n
� 	����


This regularity property is needed for the proof of the following theorems� If
	����
 does not hold� then 	����
 fails in general even in the case of the wave
equation 	see ����
� However� even though 	����
 fails� Komornik and Zuazua
��"� still proved the uniform boundary stabilization of the wave equation in
the case where n � �� Their proof was based on an inequality established
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by Grisvard ���� for the solution of the wave equation with such boundary
singularity� Whether or not Komornik and Zuazua�s result still holds for
the system of thermoelasticity with such boundary singularity is an open
problem as the similar inequality of Grisvard has not been proved yet in the
literature�

In order to state our main results� we introduce some constants as follows�
Set

R	x�
 � max
x���

jm	x
j � max
x���

j
nX

k��

	xk � x�k

� j���� 	����


K	a
 �
�A�R	x�
�

�
� 	�� n
A� 	����


where m	x
 � x � x� and A � max
x���

a	x
� Let � be the smallest positive

constant such thatZ
��

juj�d� � ��kuk�H�	�
� �u � H�	�
� 	���"


Let �� be the smallest positive constant such that

k	u� v
kH�	�
�L�	�
 � ��k	u� v
kW � �	u� v
 � W� 	����


The thermoelastic energy of 	���
 is de�ned by

E	u� �� t
 � k	u	t
� u�	t
� �	t

k�H� 	����


We now state our main results of this paper�

Theorem ���� Let �� and �� be given by ����� and ���	�
 respectively

satisfying ������� If the function a	x
 satis�es

K	a
R	x�
����� � �� for n � �� 	����


or

a	x
 � 	n� �
�

�R�	x�

on ��� for n 	 �� 	���



then there exists a positive constant �
 independent of 	u�� u�� ��

 such that

E	u� �� t
 � E	u� �� 

e���t� �t 	 
� 	����


for all solutions of ���
� with 	u�� u�� ��
 � H� Further
 the constant � can
be given by

� � k��� 	����


where

k �

��
�

k��k��k�
��K	a
R	x�
����

�
��	R	x�
����

�
� �

�
���

�


� n � �


k��k��k�
���	R	x�
����

�
� �

�
���

�


� n 	 �


	����


k� �
�R�	x�


�
�

	n � �
�

��
� �� 	����
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k� � �max
n
��

�R�	x�


�
�
	n � �
����

�

o
� 	����


k� �
��R�	x�


�
�
��	n� �
�

��
� ���� 	���"



 � � �

��
�

��K	a
R	x�
����
�

R	x�
����
�
� �

�
���

�

� n � �


�
R	x�
����

�
� �

�
���

�

� n 	 ��
	����


In the case of the Lam�e system 	���
� Theorem ��� still holds even though
a is large� Namely� we have

Theorem ���� Let �� and �� be given by ����� and ���	�
 respectively

satisfying ������� Let a	x
 be any nonnegative function on �� satisfying
������ Then there are positive constants M� �
 independent of 	u�� u�


such that

E	u� t
 �ME	u� 

e��t� �t 	 
� 	����


for all solutions of ���
� with 	u�� u�
 � W �

In this case� the energy E	u� t
 is given by

E	u� t
 �
�

�

Z
�

h
ju�	x� t
j� � �jru	x� t
j� � 	�� �
jdivu	x� t
j�

i
dx

�
�

�

Z
��

am � �ju	t
j�d��
	����


If the function a	x
 satis�es 	����
 or 	���

� then the constants M and �
in Theorem ���� of course� are the same as in Theorem ���� However� if a	x

does not satisfy 	����
 and 	���

� then M and � can not be explicitly given
since in this case the proof of Theorem ��� is based on a control�theoretic
method 	see ���� and ��"�
� which is not constructive�

Theorem ��� is an answer to the open question raised by Alabau and
Komornik ���� who proved the exponential stability of the Lam�e system for
the case where a	x
m �� � a� is a small enough constant and � is a ball� and
then conjectured that this result probably remains true even for a� large�

We now consider the controllability problem����������
��������

u�� � ��u � 	�� �
rdiv u� �r� � 
 in �� 	
��
�
�� ��� � �div u� � 
 in �� 	
��
�
� � 
 on �� 	
��
�
u � 
 on �� � 	
��
�

�
�u

��
� 	�� �
div	u
� � am � �u � 
 on �� � 	
��
�

u	

 � 
� u�	

 � 
� �	

 � 
 in ��

	���



where 
 � 	
�� � � � � 
n
 is a control acting on the boundary ���
Given T 	 
� let Q � � � 	
� T 
� # � � � 	
� T 
� #� � �� � 	
� T 
 and

#� � �� � 	
� T 
�
The partial exact controllability problem can be stated as follows� Given

T 	 
� for every state 	u�� u�
 � W 
 we want to �nd a control 
 in a suitable
function space such that the solution of ������ satis�es

u	x� T 
 � u�	x
� u�	x� T 
 � u�	x
 in �� 	����
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disregarding the values of the temperature�
As stated in ��
� p� ������� this is equivalent to steering every initial state

	u�� u�
 of the displacement in the function space to the state 	u	T 
� u�	T 

 �
	
� 

� disregarding the values of the temperature�

Let � be the smallest positive constant such that

kdivuk�� � �kuk�� �u � L�	�
� 	����


Theorem ���� Let �� and �� be given by ����� and ���	�
 respectively

satisfying ������� Assume that the function a	x
 satis�es ������ or �������
Let T� be large enough such that if T 	 T� then

�	� � ������T �
e���T � �� 	����


where � is the constant in Theorem ���� Then for any 	u�� u�
 � W 
 there
exists a boundary control function 
	x� t
 with


p
m � � � 	L�	#�



n

such that the solution of ������ satis�es ������� Moreover
 there exists pos�
itive constant c
 independent of 	u�� u�

 such that

k 
p
m � � k	L�	��

n� ck	u�� u�
kW � 	����


In comparison with the existing literature� the main contribution of The�
orem ��� is that there is no smallness restriction on the coupling parameters
� and ��

In the case of the Lam�e system�����
����

u�� � ��u� 	�� �
rdiv u � 
 in �� 	
��
�
u � 
 on �� � 	
��
�

�
�u

��
� 	�� �
div	u
� � am � �u � 
 on �� � 	
��
�

u	

 � 
� u�	

 � 
 in ��

	����


Theorem ��� still holds even though a is large� Namely� we have

Theorem ���� Let �� and �� be given by ����� and ���	�
 respectively

satisfying ������� Let a	x
 be any nonnegative function on �� satisfying
������ Let T� be large enough such that if T 	 T� then

Me��T � �� 	���"


where M and � are the constants in Theorem ���� Then for any 	u�� u�
 �
W 
 there exists a boundary control function 
	x� t
 with


p
m � � � 	L�	#�



n

such that the solution of ����	� satis�es ������� Moreover
 there exist positive
constants c�� c�
 independent of 	u

�� u�

 such that

c�k	u�� u�
kW �k 
p
m � � k	L�	��

n� c�k	u�� u�
kW � 	����
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�� Proof of main results

Let us �rst describe our steps of proof of Theorems �������� We �rst prove
Theorem ���� and then prove Theorem ���� Since the Lam�e system is a
special case of the thermoelastic system� Theorems ��� and ��� are simulta�
neously proved in the case that a	x
 satis�es 	����
 or 	���

� Finally� we
prove Theorems ��� and ��� in the case that a	x
 is large 	i�e�� a	x
 does not
necessarily satisfy 	����
 or 	���


�

In the sequel� the summation convention is assumed� We recall the con�
stants R	x�
� K	a
� � and �� are given by 	����
�	����
� respectively�

Proof of Theorem ���� The idea of the proof of Theorem ��� is simple�
According to Theorem ��� of ���� p� �
��� it su!ces to show that

Z �

s

E	u� �� t
dt � kE	u� �� s
� � s 	 
�

where k is given by 	����
� However� the proof of this inequality is generally
not easy� We use the multiplier techniques to attack it�

Given 
 � s � T � let Qs � �� 	s� T 
� #s � �� 	s� T 
� #�s � �� � 	s� T 

and #�s � �� � 	s� T 
�

We may as well assume that 	u�� u�� ��
 � D�� since the general case
	u�� u�� ��
 � H can be handled by density� Then 	u� �
 is a classical solution

of 	���
� Multiplying the �rst equation of 	���
 by mk
�ui
�xk

and integrating

on Qs� we have

Z
Qs

mk
�ui
�xk

u��i dxdt �
�
u�i	t
� mk

�ui	t


�xk

����T
s
� �

�

Z
�s

mk�k j u�i j� d#

�
n

�

Z
Qs

j u�i j� dxdt�
	���


Z
Qs

mk
�ui
�xk

�uidxdt

�

Z
�s

�ui
��

mk
�ui
�xk

d#�
Z
Qs

�ui
�xj

�

�xj

�
mk

�ui
�xk

�
dxdt

�

Z
�s

�ui
��

mk
�ui
�xk

d#�
Z
Qs

jruij�dxdt

� �

�

Z
Qs

mk
�

�xk
j rui j� dxdt

�

Z
�s

�ui
��

mk
�ui
�xk

d#� �

�

Z
�s

mk�k jruij�d#

�
n � �

�

Z
Qs

j rui j��

	���
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Z
Qs

mk
�ui
�xk

�

�xi
	div u
dxdt

�

Z
�s

div	u
mk
�ui
�xk

�id#�
Z
Qs

div	u

�

�xi

�
mk

�ui
�xk

�
dxdt

�

Z
�s

div	u
mk
�ui
�xk

�id#�
Z
Qs

jdiv	u
j�dxdt

� �

�

Z
Qs

mk
�

�xk

�
jdiv	u
j�

�
dxdt

�

Z
�s

div	u
mk
�ui
�xk

�id#� �

�

Z
�s

mk�k jdiv	u
j�d#

�
n� �

�

Z
Qs

jdiv	u
j�dxdt�

	���


Multiplying the �rst equation of 	���
 by ui and integrating over Qs� we
obtain

Z
Qs

�
j ui� j� �� j rui j� �	�� �
jdiv uj�

�
dxdt

� 	u�i	t
� ui

���T
s
� �

Z
Qs

ui
��

�xi
dxdt

� �

Z
�s

�ui
��

uid#� 	�� �


Z
�s

ui�idiv	u
d#�

	���


It therefore follows from 	���
 and 	���
�	���
 that

�

Z T

s

E	u� �� t
dt

�

Z
�s

mk�k �j u�i j� ��jruij� � 	�� �
jdiv	u
j��d#

� �

Z
�s

��
�ui
��

� 	�� �
div	u
�i�mk
�ui
�xk

d#

� 	n� �


Z
�s

��
�ui
��

� 	�� �
div	u
�i�uid#�

Z
��s

am � �juij�d#

� �
�
u�i	t
� mk

�ui	t


�xk
�
n� �

�
ui

����T
s

� ��

Z
Qs

r�	mk
�u

�xk
�
n � �

�
u
dxdt�

�

�

Z
Qs

j�j�dxdt
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	use
�ui
�xk

�
�ui
��

�k on #�s and boundary conditions of 	���



�

Z
��s

m � ���j�ui
��

j� � 	�� �
jdiv	u
j��d# 	� I�


�

Z
��s

m � ��j u�i j� ��jruij� � 	�� �
jdiv	u
j��d# 	� I�


� �

Z
��s

m � ��aui � u�i�mk
�ui
�xk

d# 	� I�


� 	n� �


Z
��s

m � ��aui � u�i�uid#�

Z
��s

am � �juij�d# 	� I



� �
�
u�i	t
� mk

�ui	t


�xk
�
n � �

�
ui

����T
s
	� I�


� ��

Z
Qs

r�	mk
�u

�xk
�
n � �

�
u
dxdt�

�

�

Z
Qs

j�j�dxdt 	� I�
�

	���


We now estimate Ii 	i � �� �� � � � � "
� Since m � � � 
 on ��� we have

I� � 
� 	��"


Using the inequality

pq � �p� �
�

��
q�� �p� q 	 
� � 	 
� 	���


we have

I� � �R�	x�


�

Z
��s

a�m � � j ui j� d#�
�R�	x�


�

Z
��s

m � � j u�i j� d#

� �

Z
��s

m � �jruij�d#�
	���


and

I
 � �	n� �


Z
��s

m � �u�iuid#� 	�� n


Z
��s

am � � j ui j� d#

� 	n� �
�

��

Z
��s

m � � j u�i j� d#� �

Z
��s

m � � j ui j� d#

� 	�� n


Z
��s

am � � j ui j� d#

	use 	���"
 and 	����



� 	n� �
�

��

Z
��s

m � � j u�i j� d#� ������R	x
�


Z T

s

E	u� �� t
dt

� 	�� n


Z
��s

am � � j ui j� d#�

	���


In order to estimate I� and I�� multiplying the �rst equation and second

equation of 	���
 by u�i and
�

�
�� respectively� and integrating over Qs� we

obtain

E	u� �� T 
�
�

�

Z
Qs

jr�j�dxdt�
Z
��s

m � � j u�i j� d# � E	u� �� s
� 	���
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Noting de�nitions 	����
 and 	���"
 of k� and k�� it follows from 	����
 and
	���

 that

I� � k�E	u� �� s
� 	����


and

I� � ��R�	x�


�

Z
Qs

jr�j�dxdt� �

Z
Qs

jruij�dxdt

�
��	n� �
�

��

Z
Qs

jr�j�dxdt� �

Z
Qs

juij�dxdt

�
����
�

Z
Qs

jr�j�dxdt

� k�E	u� �� s
 � �	
�

�
� ���


Z T

s

E	u� �� t
dt�

	����


Noting de�nition 	����
 of k�� it then follows from 	���
�	����
 that

�

Z T

s

E	u� �� t
dt

� k�

Z
��s

m � � j u�i j� �	k� � k�
E	u� �� s


� �	�����R	x
�
 �

�

�
� ���


Z T

s

E	u� �� t
dt

�

Z
��s

h�R�	x�
a�

�
� 	�� n
a

i
m � � j ui j� d# 	� I


� 	k� � k� � k�
E	u� �� s
 	use 	���




� �	�����R	x
�
 �

�

�
� ���


Z T

s

E	u� �� t
dt

� I�

	����


If n 	 �� then� by 	���

� we deduce that I � 
� Thus� if � satis�es 	����
�
then we deduce from 	����
 that

Z T

s

E	u� �� t
dt� kE	u� �� s
� � 
 � s � T� 	����


where k is given by 	����
�
If n � �� then we have

I � K	a
R	x�
�����

Z T

s

E	u� �� t
dt�

It therefore follows from 	����
 and 	����
 that 	����
 also holds provided �
satis�es 	����
� Then� by Theorem ��� of ���� p� �
��� we deduce that

E	u� �� t
� E	u� �� 

e	k�t
�k� �t 	 
�

This completes the proof of Theorem ����
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Note that Theorem ��� is simultaneously proved in the case that a	x

satis�es 	����
 or 	���

 since the Lam�e system is a special case of the ther�
moelastic system� This fact will be used in the following proof of Theorem
����

We now use Russell�s �Controllability via Stabilizability� principle ���� to
prove Theorem ����
Proof of Theorem ���� Given 	v�� v�
 � W � we consider the Lam�e system

�����
����

v�� � ��v � 	�� �
rdiv v � 
 in Q�
v � 
 on #��

�
�v

��
� 	�� �
div	v
� � am � �v �m � �v� � 
 on #��

v	T 
 � v�� v�	T 
 � v� in ��

	����


which has a unique solution with

	v	t
� v�	t

 � C	�
� T ��W 
�

Moreover� by Theorem ��� 	note that we are assuming that a	x
 satis�es
	����
 or 	���

� and in this case� Theorem ��� has been proved as the special
case of the thermoelastic system
� there exists a positive constant � such
that

E	v� t
� E	v� T 
e���	T�t
� �t � �
� T � 	���"


where

E	v� t
 �
�

�

Z
�

h
jv�	x� t
j� � �jrv	x� t
j� � 	�� �
jdivv	x� t
j�

i
dx

�
�

�

Z
��

am � �jv	t
j�d��

Using the solution v of 	����
� we then consider

��
�
�� ��� � �div	v�
 in Q�
� � 
 on #�
�	

 � 
 in ��

	����


and ���������
��������

w�� � ��w � 	�� �
rdiv w � �r� � ��r� in Q�
�� ��� � �div w� � 
 in Q�
� � 
 on #�
w � 
 on #��

�
�w

��
� 	�� �
div	w
� � am � �w �m � �w� � 
 on #��

w	

 � v	

� w�	

 � v�	

� �	

 � 
 in ��

	����


Since
div	v�
 � 	L�	
� T �H��	�


n�

it follows that 	����
 has a unique solution � with

� � C	�
� T ��L�	�

� L�	
� T �H�
�	�

�
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In addition� multiplying 	����
 by � and integrating over Q� we obtain

�

�
k�	T 
k�� �

Z T

�

kr�	t
k��dt

� �

Z T

�

Z
�

div	v�
�dxdt

� �

Z T

�

kdiv	v�	t

k��kr�	t
k�dt 	use 	����



� �

�

Z T

�

kr�	t
k��dt�
����

�

Z T

�

kv�	t
k��dt 	use 	���"



� �

�

Z T

�

kr�	t
k��dt�
����

�
Te���TE	v� T 
�

which implies

k�	T 
k�� �
Z T

�

kr�	t
k��dt � ����Te���TE	v� T 
� 	����


On the other hand� since � � L�	
� T �H�
�	�

 andZ

�

r�dx �

Z
�

��d� � 
�

then 	
���r�� 

 � L�	
� T �H
� Thus� by the classical theory of semi�
groups� the nonhomogeneous problem 	����
 has a unique solution with

	w�w�� �
 � C	�
� T ��H
�

Moreover� the solution can be expressed as

	w�w�� �
 � S	t
	w	

� w�	

� �	


�

Z t

�

S	t� �
	
���r�� 

d��

where S	t
 denotes the strongly continuous semigroup of contractions gen�
erated by the thermoelastic system� Since the semigroup S	t
 is contractive�
that is�

kS	t
k � �� �t 	 
�

then we deduce from 	����


E	w� �� t
� �E	w� �� 

� �
� Z t

�

k�r�	�
k�d�
��

� �E	w� �� 

� �������T �e���TE	v� T 
�

	���



Set
u � w � v� � � � � ��

and

 � �m � �	w� � v�
� 	����
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then u� � satis�es

�����������
����������

u�� � ��u� 	�� �
rdiv u� �r� � 
 in Q�
�� ��� � �div u� � 
 in Q�
� � 
 on #�
u � 
 on #��

�
�u

��
� 	�� �
div	u
� � am � �u � 
 on #��

u	

 � u�	

 � 
� �	

 � 
 in ��
u	T 
 � w	T 
� v�� u�	T 
 � w�	T 
� v� in ��

We de�ne an operator $ by

$	v�� v�
 � 	w	T 
� w�	T 

�

Then it is clear that $ is a linear operator from W into W � Moreover� by
	���"
 and 	���

� we have

k $	v�� v�
 k�W
	note de�nition 	���
 of the norm of W 


� E	w� ��T 


� �E	w� �� 

� �������T �e���TE	v� T 


	since w	

 � v	

� w�	

 � v�	

� �	

 � 



� �E	v� 

� �������T �e���TE	v� T 


� 	� � �������T �
e���TE	v� T 
 	use 	���"



� 	� � �������T �
e���T k 	v�� v�
 k�W �

Therefore�

k $ k�� 	� � �������T �
e���T �

Let T� be large enough so that 	����
 holds if T 	 T�� Then $ � I is an
isomorphism from W onto W � Thus� for any 	u�� u�
 � W � there exists a
unique 	v�� v�
 � W such that

	u�� u�
 � $	v�� v�
� 	v�� v�


� 	w	T 
� w�	T 

� 	v�� v�


� 	u	T 
� u�	T 

�

	����


Consequently� we have constructed a control function 
 � �m � �	w� � v�

solving the partial controllability problem 	���

�

On the other hand� multiplying the �rst equation of 	����
 by v�i and
integrating over Q� we obtain

Z
��

m � �jv�j�d# � E	v� T 
� E	v� 

� 	����
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Multiplying the �rst equation and second equation of 	����
 by w�i and
�

�
��

respectively� and integrating over Q� we deduce from 	����
 and 	���

 that
	the following c�s denoting various constants


E	w� ��T 
�
�

�

Z
Q

jr�j�dxdt�
Z
��

m � � j w� j� d#

� E	w� �� 

� �

Z
Q

w� � r�dxdt

� E	w� �� 

� cTe��TE	v� T 
 �

Z T

�

E	w� �� �
d�

� 	� � �T 
E	w� �� 

� 	� � T �
cTe��TE	v� T 
�

	����


Noting E	v� 

 � E	w� �� 

� we deduce from 	���"
� 	����
 and 	����
 that
Z
��

j
j�
m � � d# �

Z
��

m � � j v� � w� j� d# � cE	v� T 
�

which� combining with 	����
� implies 	����
 since $� I is an isomorphism
from W onto itself�

Note that Theorem ��� is simultaneously proved in the case that a	x

satis�es 	����
 or 	���

 since the Lam�e system is a special case of the ther�
moelastic system� This fact will be used in the following proof of Theorem
����

We now use the control�theoretic method given in ���� and ��"� to complete
the proof of Theorem ���� That is� we are going to prove Theorem ��� in
the case that a	x
 is large�
Proof of Theorem ���� Let u	t
 be the solution of 	���
� Let � 	 
 satisfy
	����
 or 	���

 and let T be large enough so that Theorem ��� holds with
a � � 	note that we are assuming that a satis�es 	����
 or 	���

� and in this
case� Theorem ��� has been proved as the special case of the thermoelastic
system
� Since 	u	T 
� u�	T 

 � W � it follows from Theorem ��� that there
exists a control 
 such that�������

������

y�� � ��y � 	�� �
rdiv y � 
 in �� 	
��
�
y � 
 on �� � 	
��
�

�
�y

��
� 	�� �
div	y
� � �m � �y � 
 on �� � 	
��
�

y	

 � 
� y�	

 � 
 in ��
y	T 
 � u	T 
� y�	T 
 � u�	T 
 in ��

	����


According to the proof of Theorem ���� y and 
 can be written as

y � w� v� 
 � �m � �	v� � w�
� 	���"


where v and w are respectively the solutions of�����
����

v�� � ��v � 	�� �
rdiv v � 
 in Q�
v � 
 on #��

�
�v

��
� 	�� �
div	v
� � �m � �v �m � �v� � 
 on #��

v	T 
 � v�� v�	T 
 � v� in ��

	����
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and�����
����

w�� � ��w � 	�� �
rdiv w � 
 in �� 	
��
�
w � 
 on �� � 	
��
�

�
�w

��
� 	�� �
div	w
� � �m � �w �m � �w� � 
 on �� � 	
��
�

w	

 � v	

� w�	

 � v�	

 in ��
	����


Note that the Lam�e system is the special case of the thermoelastic system
where � � � � 
� so 	����
 is reduced to 	����
� In 	����
� 	v�� v�
 is chosen
to be such that

	w	T 
� w�	T 

� 	v�� v�
 � $	v�� v�
� 	v�� v�
 � 	u	T 
� u�	T 

� 	����


To avoid confusion� we denote the energy of 	���
 with a	x
 by Ea	u� t

and the energy of 	����
 with � by E�	v� t
� Evidently� Ea	u� t
 is equivalent
to E�	u� t
�

Integrating by parts� it follows from 	���
 and 	����
 that


 �

Z
Q

h
y�i	u

��
i � ��ui � 	�� �
rdiv u


� u�i	y
��
i � ��yi � 	�� �
rdiv y


i
dxdt

�

Z
Q

�

�t
	u�iy

�
i � �rui � ryi � 	�� �
div udiv y
dxdt

�

Z
��

	y�im � �	aui � u�i
 � u�i	�m � �yi � 
i

d#

�

Z
�

	ju�i	T 
j� � �jrui	T 
j� � 	�� �
jdiv u	T 
j�
dx

�

Z
��

am � �jui	T 
j�d�

�

Z
��

u�i	m � �y�i � am � �yi � �m � �yi � 
i
d#

� �Ea	u� T 
 �

Z
��

u�i	m � �y�i � am � �yi � �m � �yi � 
i
d#�

	���



By the trace theorem and 	���"
 and 	����
� we have 	the following c�s
denoting various constants that may depend on T 


Z
��

m � �jyj�d# � c

Z T

�

ky	t
k�	H�	�

ndt

� c

Z T

�

	kvk�	H�	�

n � kwk�	H�	�

n 
dt

� c	E�	v� T 
 �E�	w� 




� cE�	v� T 
 	E�	w� 

 � E�	v� 

� cE�	v� T 



� cE�	u� T 
 	use 	����



� cEa	u� T 
�

	����
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Multiplying the �rst equation of 	����
 by v�i and integrating over Q� we
obtain Z

��

m � �jv�j�d# � E�	v� T 
� E�	v� 

� 	����


Similarly� we have

Z
��

m � �jw�j�d# � E�	w� 

� E�	w� T 
� 	����


It therefore follows from 	���"
 and 	����
 that

Z
��

m � �jy�j�d#

� �

Z
��

m � �	jv�j� � jw�j�
d#

� c�E�	v� T 
�E�	v� 

 �E�	w� 

� E�	w� T 
�

� cE�	v� T 
 	as in 	����



� cEa	u� T 
�

	����


By 	����
 	note that we are assuming that a � � satis�es 	����
 or 	���

�
and in this case� Theorem ��� has been proved as the special case of the
thermoelastic system� so 	����
 can be used
� we have

Z
��

j
j�
m � � d# � cE�	u� T 
 � cEa	u� T 
� 	����


By Cauchy�Schwarz�s inequality we deduce from 	���

 that

	Ea	u� T 


� � c

Z
��

m � �ju�ij�d#
Z
��

m � �jy�i�ayi� �yi� 
i
m � � j

�d#� 	���"


It therefore follows from 	����
� 	����
 and 	����
 that

cEa	u� T 
 �
Z
��

m � �ju�j�d#� 	����


On the other hand� multiplying the �rst equation of 	���
 by u�i and inte�
grating over Q� we obtain

Z
��

m � �ju�j�d# � Ea	u� 

� Ea	u� T 
� 	����


We then conclude from 	����
 and 	����
 that

cEa	u� T 
 � Ea	u� 

� Ea	u� T 
�

and hence�

Ea	u� T 
 � �

� � c
Ea	u� 

�
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Repeating the above reasoning� we get

Ea	u� 	k� �
T 
 � �

� � c
Ea	u� kT 


� �

	� � c
k��
Ea	u� 

� k � 
� �� �� � � �

which implies 	����
 with

M � �� c� � �
�

T
ln	� � c
�

Proof of Theorem ���� The proof is the same as that of Theorem ��� except
that 	����
 is replaced by

�����
����

w�� � ��w � 	�� �
rdiv w � 
 in Q�
w � 
 on #��

�
�w

��
� 	�� �
div	w
� � am � �w �m � �w� � 
 on #��

w	

 � v	

� w�	

 � v�	

 in ��

	����


In this case� we obtain
k$k �Me��T �

Thus� 	����
 becomes 	���"
� In addition� for Theorem ���� we have to
further prove the following estimate

c�k	u�� u�
kW �k 
p
m � � k	L�	��

n � 	���



Multiplying the �rst equation of 	����
 by w�i and integrating over Q� we
obtain Z

��

m � �jw�j�d# � E	w� 

� E	w� T 
� 	����


It therefore follows from Theorem ��� that

	��Me��T 
���E���	w� 

�k pm � �w� kL�	��
� E���	w� 

� 	����


Similarly� by 	����
� we deduce that

	��Me��T 
���E���	v� T 
�k pm � �v� kL�	��
� E���	v� T 
� 	����


Noting E	v� 

 � E	w� 

� we deduce from the triangle inequality and The�
orem ��� that

���Me��T ������� 	Me��T 
����E���	v� T 


�k pm � �	v� � w�
 kL�	��


� �� � 	Me��T 
����E���	v� T 
�

	����


Since I � $ is an isomorphism� 	���

 follows from 	����
� 	����
 and
	����
�
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