Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity
ESAIM: Control, Optimisation and Calculus of Variations, Tome 3 (1998), pp. 23-48.
@article{COCV_1998__3__23_0,
     author = {Liu, Weijiu},
     title = {Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {23--48},
     publisher = {EDP-Sciences},
     volume = {3},
     year = {1998},
     zbl = {0917.93032},
     mrnumber = {1610226},
     language = {en},
     url = {http://archive.numdam.org/item/COCV_1998__3__23_0/}
}
TY  - JOUR
AU  - Liu, Weijiu
TI  - Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 1998
DA  - 1998///
SP  - 23
EP  - 48
VL  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/COCV_1998__3__23_0/
UR  - https://zbmath.org/?q=an%3A0917.93032
UR  - https://www.ams.org/mathscinet-getitem?mr=1610226
LA  - en
ID  - COCV_1998__3__23_0
ER  - 
Liu, Weijiu. Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 3 (1998), pp. 23-48. http://archive.numdam.org/item/COCV_1998__3__23_0/

[1] R. Adams: Sobolev spaces, Academic Press, New York, 1975. | MR 450957 | Zbl 0314.46030

[2] F. Alabau, V. Komornik: Boundary observability, controllability and stabilization of linear elastodynamic systems, SIAM J. Control Optim., to appear. | MR 1665070 | Zbl 0935.93037

[3] G. Avalos, I. Lasiecka: Exponential stability of a free thermoelastic system without mechanical dissipation, SIAM J. Math. Anal., to appear. | MR 1617180 | Zbl 0914.35139

[4] C. Bardos, G. Lebeau, J. Rauch: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim. 30, 1992, 1024-1065. | MR 1178650 | Zbl 0786.93009

[5] J.A. Burns, Z.Y. Liu, S. Zheng: On the energy decay of a linear thermoelastic bar, J. Math. Anal. Appl., 179, 1993, 574-591. | MR 1249839 | Zbl 0803.35150

[6] E. Bisognin, V. Bisognin, G.P. Menzala, E. Zuazua: On exponential stability for the Von Kármán equations in the presence of thermal effects, Math. Methods Appl. Sci., to appear. | Zbl 0911.35022

[7] G. Chen: Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, J. Math. Pures Appl., 58, 1979, 249-273. | MR 544253 | Zbl 0414.35044

[8] S. Chirita: On the asymptotic partition of the energy in linear thermoelasticity, Quart. Appl. Math., 45, 1987, 327-340. | MR 895103 | Zbl 0626.73002

[9] C.M. Dafermos: On the existence and the asymptotic stability of solution to the equations of linear thermoelasticity, Arch. Rational Mech. Anal., 29, 1968, 241-271. | MR 233539 | Zbl 0183.37701

[10] G. Dassios, M. Grillakis: Dissipation rates and partition of energy in thermoelasticity, Arch. Rational Mech. Anal., 87, 1984, 49-91. | MR 760319 | Zbl 0563.73007

[11] P. Grisvard: Contrôlabilité exacte des solutions de l'équation des ondes en présence de singularités, J. Math. Pures Appl., 68, 1989, 215-259. | MR 1010769 | Zbl 0683.49012

[12] S.W. Hansen: Exponential energy decay in a linear thermoelastic rod, J. Math. Anal. Appl., 167, 1992, 429-442. | MR 1168599 | Zbl 0755.73012

[13] S.W. Hansen: Boundary control of a one-dimensional linear thermoelastic rod, SIAM J. Control Optim., 32, 1994, 1054-1074. | MR 1280229 | Zbl 0925.93090

[14] J.U. Kim: On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23, 1992, 889-899. | MR 1166563 | Zbl 0755.73013

[15] V. Komornik: Exact controllability and stabilization: The multiplier method, John Wiley & Sons, Masson, Paris, 1994. | MR 1359765 | Zbl 0937.93003

[16] V. Komornik, E. Zuazua: A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl., 69, 1990, 33-54. | MR 1054123 | Zbl 0636.93064

[17] A.D. Kovalenko: Thermoelasticity, basic theory and applications, Wolters-Noordhoff Publishing, Groningen, Netherlands, 1969. | Zbl 0209.56303

[18] J. Lagnese: Decay of solutions of wave equations in a bounded region with boundary dissipation, J. Differential Equations, 50, 1983, 163-182. | MR 719445 | Zbl 0536.35043

[19] J. Lagnese: Boundary stabilization of linear elastodynamic systems, SIAM J. Control Optim., 21, 1983, 968-984. | MR 719524 | Zbl 0531.93044

[20] J. Lagnese: Boundary Stabilization of Thin Plates, in SIAM Studies in Applied Mathematics, 10, SIAM Publications, Philadelphia, 1989. | MR 1061153 | Zbl 0696.73034

[21] J. Lagnese: The reachability problem for thermoelastic plates, Arch. Rational Mech. Anal., 112 ( 1990), 223-267. | MR 1076073 | Zbl 0744.73028

[22] J. Lagnese, J-.L. Lions: Modelling analysis and control of thin plates, Masson, Paris, 1989. | MR 953313 | Zbl 0662.73039

[23] P. Lax, R.S. Phillips: Scattering theory, Revised Edition, Academic Press INC., Boston, 1989. | MR 1037774 | Zbl 0697.35004

[24] G. Lebeau, L. Robbiano: Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1 & 2), 1995, 335-356. | MR 1312710 | Zbl 0819.35071

[25] G. Lebeau, E. Zuazua: Sur la décroissance non uniforme de l'énergie dans le système de la thermoélasticité linéaire, C. R. Acad. Sci. Paris Sér. I Math., 324, 1997409-415. | MR 1440958 | Zbl 0873.35011

[26] G. Lebeau, E. Zuazua: Null controllability of a system of linear thermoelasticity, Arch. Rational Mech. Anal., to appear. | MR 1620510 | Zbl 1064.93501

[27] G. Leugering: On boundary feedback stabilization of a viscoelastic membrance, Dynam. Stability Systems, 4, 1989, 71-79. | MR 1023012 | Zbl 0681.93051

[28] G. Leugering: On boundary feedback stabilization of a viscoelastic beam, Proc. Roy. Soc. Edinburgh Sect. A, 114, 1990, 57-69. | MR 1051607 | Zbl 0699.73037

[29] G. Leugering: A decomposition method for integro-partial differential equations and applications, J. Math. Pures Appl., 71, 1992, 561-587. | MR 1193609 | Zbl 0830.45009

[30] J.-L. Lions: Controlabilité exacte perturbations et stabilisation de systèmes distribues, Tome 2, Perturbations, Masson, Paris, 1988. | MR 963060 | Zbl 0653.93003

[31] J.-L. Lions, E. Magenes: Non-homogeneous boundary value problems and applications, vol. I and II, Springer-Verlag, New York, 1972. | MR 350177 | Zbl 0223.35039

[32] J.-L. Lions, E. Zuazua, A generic Uniqueness Resuit for the Stokes system and its control theoretical consequences, in Partial Differential Equations and Applications, P. Marcellini, G.T. Talenti, E. Vesentini, Eds., Lecture Notes in Pure and Applied Mathematics, 177, 221-235, Marcel Dekker, Inc., New York, 1996. | MR 1371594 | Zbl 0852.35112

[33] W.J. Liu, The exponential stabilization of the higher-dimensional linear thermoviscoelasticity, J. Math. Pures Appl., to appear. | Zbl 0922.35018

[34] Z. Liu, M. Renardy: A note on the equations of thermoelastic plates, Appl. Math. Letters, 8, 1995, 1-6. | MR 1356798 | Zbl 0826.35048

[35] Z. Liu, S. Zheng: Exponential stability of the semigroup associated with a thermoelastic system, Quart. Appl. Math., LI, 1993, 535-545. | MR 1233528 | Zbl 0803.35014

[36] Z. Liu, S. Zheng: Exponential stability of the Kirchoff plate with thermal or viscoelastic damping, Quart. Appl. Math, to appear. | MR 1466148 | Zbl 0889.35015

[37] G.P. Menzala, E. Zuazua: Explicit exponential decay rates for solutions of von Kármán's system of thermoelastic plates, C. R. Acad. Sci. Paris Sér. I Math., 324, 1997, 49-54. | MR 1435586 | Zbl 0873.73042

[38] G.P. Menzala, E. Zuazua: Energy decay rates for the Von Kármán system of thermoelastic plates, Adv. Differential Equations, to appear. | Zbl 1008.35077

[39] C.S. Morawetz: Exponential decay of solutions of the wave equation, Comm. Pure Appl. Math., 19, 1966, 439-444. | MR 204828 | Zbl 0161.08002

[40] K. Narukawa: Boundary value control of thermoelastic systems, Hiroshima Math. J., 13, 1983, 227-272. | MR 707182 | Zbl 0531.73012

[41] A. Pazy: Semigroup of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983. | MR 710486 | Zbl 0516.47023

[42] D.C. Pereira, G.P. Menzala: Exponential decay of solutions to a coupled system of equations of linear thermoelasticity, Comput. Appl. Math., 8, 1989, 193-204. | MR 1067285 | Zbl 0718.73012

[43] J.E.M. Rivera: Decomposition of the displacement vector field and decay rates in linear thermoelasticity, SIAM J. Math. Anal. 24, 1993, 390-406. | MR 1205533 | Zbl 0781.73012

[44] J.E.M. Rivera, R. Racke: Smoothing properties, decay and global existence of solutions to nonlinear coupled systems of thermoelastic type, SBF series No. 287, Bonn University, 1993.

[45] D.L. Russell: Exact boundary value controlability theorems for wave and heat processes in star-complemented regions, in Differential games and control theory, Roxin, Liu, and Sternberg, Eds., Marcel Dekker Inc., New York, 1974, 291-319. | MR 467472 | Zbl 0308.93007

[46] D.L. Russell: Decay rates for weakly damped systems in Hilbert space obtained with control-theoretic methods, J. Differential Equations, 19, 1975, 344-370. | MR 425291 | Zbl 0326.93018

[47] L. De Teresa, E. Zuazua: Controllability of the linear system of thermoelastic plates, Adv. Differential Equations, 1, 3, 1996, 369-402. | MR 1401399 | Zbl 0853.93017

[48] E. Zuazua: Controllability of the linear system of thermoelasticity, J. Math. Pures. Appl., 74, 1995, 291-315. | MR 1341768 | Zbl 0846.93008