Controllability and observability of linear delay systems : an algebraic approach
ESAIM: Control, Optimisation and Calculus of Variations, Volume 3 (1998), pp. 301-314.
@article{COCV_1998__3__301_0,
     author = {Fliess, M. and Mounier, H.},
     title = {Controllability and observability of linear delay systems : an algebraic approach},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {301--314},
     publisher = {EDP-Sciences},
     volume = {3},
     year = {1998},
     mrnumber = {1644427},
     zbl = {0908.93013},
     language = {en},
     url = {http://archive.numdam.org/item/COCV_1998__3__301_0/}
}
TY  - JOUR
AU  - Fliess, M.
AU  - Mounier, H.
TI  - Controllability and observability of linear delay systems : an algebraic approach
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 1998
SP  - 301
EP  - 314
VL  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/COCV_1998__3__301_0/
LA  - en
ID  - COCV_1998__3__301_0
ER  - 
%0 Journal Article
%A Fliess, M.
%A Mounier, H.
%T Controllability and observability of linear delay systems : an algebraic approach
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 1998
%P 301-314
%V 3
%I EDP-Sciences
%U http://archive.numdam.org/item/COCV_1998__3__301_0/
%G en
%F COCV_1998__3__301_0
Fliess, M.; Mounier, H. Controllability and observability of linear delay systems : an algebraic approach. ESAIM: Control, Optimisation and Calculus of Variations, Volume 3 (1998), pp. 301-314. http://archive.numdam.org/item/COCV_1998__3__301_0/

[1] Z. Bartosiewicz: Approximate controllability of neutral systems with delays in control, J. Diff. Eq., 51, 1984, 295-325. | MR | Zbl

[2] A. Bensoussan, G. Da Prato, M.C. Delfour, S.K. Mitter: Representation and Control of Infinite Dimensional Systems, 1, 2, Birkhäuser, Boston, 1992-1993. | MR | Zbl

[3] K.P.M. Bhat, H.N. Koivo: Modal characterizations of controllability and observability for time-delay systems, IEEE Trans. Automat. Contr., 21, 1976, 292-293. | MR | Zbl

[4] H. Bourlès, M. Fliess: Finite poles and zeros of linear systems: an intrinsic approach, Internat J. Control, 68, 1997, 897-922. | MR | Zbl

[5] J.W. Brewer, J.W. Bunce, F.S. Van Vleck: Linear Systems over Commutative Rings, Marcel Dekker, New York, 1986. | MR | Zbl

[6] D.A. Buchsbaum, D. Eisenbud: What makes a complex exact?J. Alg., 25, 1973, 259-268. | MR | Zbl

[7] C.I. Byrnes: On the control of certain deterministic, infinite-dimensional systems by algebro-geometric techniques, Amer. J. Math., 100, 1978, 1333-1381. | MR | Zbl

[8] R.M. Cohn: A difference-differential basis theorem, Canad. J. Math., 22, 1970, 1224-1237. | MR | Zbl

[9] D. Eisenbud: Commutative Algebra with a View toward Algebraic Geometry, Springer-Verlag, New York, 1995. | MR | Zbl

[10] M. Fliess: Some basic structural properties of generalized linear systems, Systems Control Lett., 15, 1990, 391-396. | MR | Zbl

[11] M. Fliess: A remark on Willems' trajectory characterization of linear controllability, Systems Control Lett., 19, 1992, 43-45. | MR | Zbl

[12] M. Fliess: Reversible linear and non linear discrete time dynamics, IEEE Trans. Automat. Contr., 37, 1992, 1144-1153. | MR | Zbl

[13] M. Fliess: Une interprétation algébrique de la transformation de Laplace et des matrices de transfert, Linear Alg. Appl., 203-204, 1994, 429-442. | MR | Zbl

[14] M. Fliess, H. Bourlès: Discussing some examples of linear systems interconnections, Systems Control Lett., 27, 1996, 1-7. | MR | Zbl

[15] M. Fliess, R. Hotzel: Sur les systèmes linéaires à dérivation non entière, C.R. Acad. Sci. Paris II, 324, 1997, 99-105. | Zbl

[16] M. Fliess, H. Mounier: Quelques propriétés structurelles des systèmes linéaires à retards constants, C. R. Acad. Sci. Paris I, 319, 1994, 289-294. | MR | Zbl

[17] M. Fliess, H. Mounier: Interpretation and comparison of various types of delay system controllabilities, In Proc. IFAC Conference System, Structure and Control, Nantes, 1995, 330-335.

[18] E. Fornasini, M.E. Valcher: A polynomial matrix approach to the behavioral analysis of nd systems, In 3rd European Control Conference Proc., Rome, 1995, 1757-1762.

[19] H. Glüsing-Lüerβen: A behavioral approach to delay differential systems, SIAM J. Contr. Opt., 35, 1997, 480-499. | MR | Zbl

[20] A. Grothendieck, J.A. Dieudonné: Eléments de géométrie algébrique I, Springer-Verlag, Berlin 1971. | Zbl

[21] R. Hartshorne: Algebraic Geometry, Springer-Verlag, NewYork, 1977. | MR | Zbl

[22] R.E. Kalman, P.L. Falb, M.A. Arbib: Topics in Mathematical Systems Theory, McGraw-Hill, New York, 1969. | MR | Zbl

[23] E.W. Kamen: On an algebraic theory of systems defined by convolution operators, Math. Syst. Theory, 9, 1975, 57-74. | MR | Zbl

[24] E.W. Kamen: An operator theory of linear functional differential equations, J. Diff. Eq., 27, 1978, 274-297. | MR | Zbl

[25] E.W. Kamen, P.P. Khargonekar, A. Tannenbaum: Proper stable Bezout factorization and feedback control of linear time-delay systems, Internat. J. Control, 43, 1986, 837-857. | MR | Zbl

[26] T.Y. Lam: Serre's Conjecture, Springer-Verlag, Berlin, 1978. | MR | Zbl

[27] S. Lang: Algebra, 3rd ed., Addison-Wesley, Reading, MA, 1993. | MR | Zbl

[28] E.B. Lee, S. Neftci, A. Olbrot: Canonical forms for time delay systems, IEEE Trans. Automat. Contr., 27, 1982, 128-132. | MR | Zbl

[29] E.B. Lee, A. Olbrot: Observability and related structural results for linear hereditary systems, Internat. I. Control, 34, 1981, 1061-1078. | MR | Zbl

[30] A. Manitius, R. Triggiani: Function space controllability of retarded systems: a derivation from abstract operator conditions, SIAM J. Contr. Opt., 16, 1978, 599-645. | MR | Zbl

[31] A.S. Morse: Ring models for delay-differential systems, Automatica, 12, 1976, 529-531. | MR | Zbl

[32] H. Mounier: Propriétés structurelles des systèmes linéaires à retards : aspects théoriques et pratiques, Thèse, Université Paris-Sud, Orsay, 1995.

[33] H. Mounier: Algebraic interpretations of the spectral controllability of a linear delay system, Forum Math., 10, 1998, 39-58. | MR | Zbl

[34] H. Mounier: Stabilization of a class of linear delay systems, Math. Comp. Sim., 45, 1998, 329-338. | MR | Zbl

[35] H. Mounier, J. Rudolph, M. Fliess, P. Rouchon: Tracking control of a vibrating string with an interior mass viewed as a delay system, ESAIM: Control Optimisation and Calculus of Variations, http://www.emath.fr/cocv/, 3, 1998, 315-321. | Numdam | MR | Zbl

[36] H. Mounier, P. Rouchon, J. Rudolph: Some examples of linear delay systems, RAIRO-JESA-APII, 31, 1997, 911-925.

[37] H. Mounier, P. Rouchon, J. Rudolph: π-freeness of a long electric line, Comput. Eng. in Syst. Appl. IMACS Multiconference, Lille, 1996, 28-29.

[38] D.A. O'Connor, T.J. Tarn: On the function space controllability of linear neutral systems, SIAM J. Contr. Opt., 21, 1983, 306-329. | MR | Zbl

[39] P. Picard, J.F. Lafay: Further results on controllability of linear systems with delays, In European Control Conference Proc., Rome, 1995, 3313-3318.

[40] D. Quillen: Projective modules over polynomial rings, Inv. Math., 36, 1976, 167-171. | MR | Zbl

[41] P. Rocha, J. Willems: Behavioral controllability of D-D systems, SIAM J. Contr. Opt., 35, 1997, 254-264. | MR | Zbl

[42] J. Rotman: An Introduction to Homological Algebra, Academic Press, New-York, 1979. | MR | Zbl

[43] L.H. Rowen: Ring Theory, Academic Press, Boston, 1991. | MR | Zbl

[44] J.P. Serre: Faisceaux algébriques cohérents, Annals of Math., 61, 1955, 197-278. | MR | Zbl

[45] E.D. Sontag: Linear systems over commutative rings: a survey, Richerche di Automatica, 7, 1976, 1-34. | Zbl

[46] M.W. Spong, T.J. Tarn: On the spectral controllability of delay-differential equations, IEEE Trans. Automat. Contr., 26, 1981, 527-528. | MR | Zbl

[47] A.A. Suslin: Projective modules over a polynomial ring are free (in Russian), Dokl. Akad. Nauk. S.S.S.R., 229, 1976, 1063-1066; English translation: Soviet Math. Dokl., 17, 1160-1164. | MR | Zbl

[48] Y. Yamamoto: Reachability of a class of infinite-dimensional linear systems: an external approach with applications to general neutral systems, SIAM J. Contr. Opt., 27, 1989, 217-234. | MR | Zbl

[49] D.C. Youla, G. Gnavi: Notes on n-dimensional system theory, IEEE Trans. Circuits Syst., 26, 1979, 105-111. | MR | Zbl

[50] D.C. Youla, P.F. Pickel: The Quillen-Suslin theorem and the structure of n-dimensional elementary polynomial matrices, IEEE Trans. Circuits Syst., 31, 1984, 513-518. | MR | Zbl