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STABILIZATION OF A HYBRID SYSTEM WITH A NONLINEAR

NONMONOTONE FEEDBACK

Eduard FEIREISL
1

and Geoffrey O’DOWD
2

Abstract. For a hybrid system composed of a cable with masses at both ends, we prove the existence
of solutions for a class of nonlinear and nonmonotone feedback laws by means of a priori estimates.
Assuming some local monotonicity, strong stabilization is obtained thanks to some Riemann’s invariants
technique and La Salle’s principle.

Résumé. Pour un système hybride constitué d’un câble aux extrémités duquel sont accrochées deux
masses, on prouve l’existence de solutions pour une classe de lois de feedbacks non linéaires et non
monotones grâce à des estimations a priori. Une hypothèse de monotonie locale combinée à une
technique d’invariants de Riemann permet de se ramener à un semi-groupe contractant pour lequel le
principe de La Salle conduit à la stabilité forte du système.
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1. Introduction

In this work, we study an overhead crane model consisting of a cable carrying a load, the cable being linked
at its top end to a platform moving along a rail by means of a feedback type force taking into account the
position and the velocity of the platform. The objective is to drive it at a given point from a given configuration
so that the whole structure should be at rest.

In Section 2, we describe a modelization and mention some previous results, while in Section 3, we convert
this system in terms of an evolution equation for which well-posedness is proven using a result of lipschitz
perturbation of maximal monotone operators and some a priori estimates . The essential part of this work is
Section 4, which is devoted to establishing the strong stabilization of the hybrid system.

2. Description of the model

We consider the modelization described in [1,6] or [4]: m and M denote respectively the mass of the platform
and the load. The cable is non stretching and of unit length.

Let us define y(x, t) as the horizontal displacement at the point of the cable whose curvilinear abscissa is x
at time t and a(x) the tension force of the cable. The force acting on the platform is noted F .
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Assuming that the oscillations of the cable are weak, this system is governed by the equations ytt(x, t)− (ayx)x(x, t) = 0, t > 0, 0 < x < 1
(ayx)(1, t) +Mytt(1, t) = 0
(ayx)(0, t)−mytt(0, t) = F (t).

(2.1)

The wave equation is coupled with dynamical equations at both ends creating thus a hybrid system.
We shall suppose throughout this work that the tension force satisfies

(i) a ∈ H1(0, 1)
(ii) a(x) ≥ a0 > 0 ∀x ∈ [0, 1].

(2.2)

For a solution y of (2.1), let us define its energy:

E(t)=
1

2

[∫ 1

0

(
a(x)y2

x(x, t)+y2
t (x, t)

)
dx+αy2(0, t)+my2

t (0, t)+My2
t (1, t)

]
(2.3)

where α > 0 is a constant. As we seek for asymptotic stabilization at y = 0, we shall prove that under suitable
assumptions E(t) tends to zero as t goes to infinity.

A simple formal computation gives

E′(t) = −yt(0, t) (F (t)− αy(0, t)) (2.4)

so that choosing F of the form

F (t) = αy(0, t) + f(yt(0, t)) (2.5)

where the feedback function f satisfies

∀s ∈ IR, sf(s) ≥ 0, (2.6)

we obtain dissipativity of the system, since

E′(t) = −yt(0, t)f ((yt(0, t)) ≤ 0. (2.7)

In [1], by neglectingM and taking f non decreasing, the authors prove the well-posedness and strong stabilization
of the system. The same results are obtained in [6] by neglecting m; moreover, estimates of the energy decay
are obtained according to the behaviour of f at 0 and infinity.

In [5], both masses are taken into account and strong stabilization is achieved when f is linear but no decay
rate may be expected according to Russell’s compact perturbation of a semigroup of isometric operators theorem
(see [7]).

In these works, strong stabilization is essentially due to La Salle’s principle (see [3]) applied to a semigroup
which is contractant by virtue of the monotonicity assumption on the feedback law f . We shall prove that the
global monotonicity assumption may be relaxed to a local one.

3. Well-posedness of the system

Let us from now on study the system ytt(x, t) − (ayx)x(x, t) = 0
(ayx)(1, t) +Mytt(1, t) = 0
(ayx)(0, t)−mytt(0, t) = αy(0, t) + f(yt(0, t))

(3.1)
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which is converted in a standard fashion into an evolution equation by introducing the variable U(t) =
(y(., t), yt(., t), yt(0, t), yt(1, t)). More precisely, let us define the space

H = H1(0, 1)× L2(0, 1)× IR2 (3.2)

endowed with the hilbertian scalar product:

〈U, Ũ〉 =

∫ 1

0

[a(x)yx(x)ỹx(x)+z(x)z̃(x)] dx+αy(0)ỹ(0)+mηη̃+Mξξ̃ (3.3)

for U = (y, z, η, ξ) and Ũ = (ỹ, z̃, η̃, ξ̃), the unbounded operator A0

D(A0)=
{
U=(y, z, η, ξ) ∈ H2(0, 1)×H1(0, 1)×IR2 / η =z(0), ξ =z(1)

}
(3.4)

A0(U) =

(
−z,−(ayx)x,−

1

m
(ayx(0)− αy(0)),

1

M
ayx(1)

)
(3.5)

and the operator B defined on H by

B(U) =

(
0, 0,

1

m
f(η), 0

)
. (3.6)

We consider now the evolution equation

dU

dt
+A0U +B(U) = 0, U(0) = U0 (3.7)

with initial data U0 = (y0, z0, η0, ξ0) ∈ D(A0).
As one can easily check, a solution t 7→ U(t) = (y(., t), z(., t), η(t), ξ(t)) of (3.7) is such that y satisfies (3.1),

at least formally, with y(x, 0) = y0(x) and yt(x, 0) = z0(x). For this reason, system (3.1) will be interpreted in
terms of equation (3.7).

Next, we prove the existence and uniqueness of solutions for (3.7) by means of a lipschitz perturbation
theorem under the following assumptions for the feedback law f :

(i) f ∈ C0(IR) and ∀s ∈ IR, sf(s) ≥ 0

(ii) on every compact interval, the increment ratio f(s)−f(s′)
s−s′

is bounded below.

(3.8)

Lemma 1. The operator A0 defined by (3.4)-3(5) is maximal monotone on H.

Proof. Monotonicity: a straightforward computation gives 〈A0U,U〉 = 0 for all U0 ∈ D(A0). The
monotonicity of A0 is then a consequence of its linearity.
Maximality: let U0 = (y0, z0, η0, ξ0) ∈ H. The equation

(I +A0)U = U0, U ∈ D(A0) (3.9)
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is equivalent to finding y ∈ H2(0, 1) and z ∈ H1(0, 1) such that

y − z = y0

z − (ayx)x = z0

z(0)−
1

m
(ayx(0)− αy(0)) = η0

z(1) +
1

M
ayx(1) = ξ0 .

(3.10)

Eliminating z = y − y0, one obtains
y − (ayx)x = y0 + z0

1

m
ayx(0)−

( α
m

+ 1
)
y(0) = −η0 − y0(0)

1

M
ayx(1) + y(1) = ξ0 + y0(1) .

(3.11)

By applying Lax-Milgram’s theorem, (3.11) has a unique solution y ∈ H2(0, 1). Setting z = y − y0, η = z(0)
and ξ = z(1), we see that U = (y, z, η, ξ) satisfies (3.9).

For the existence of solutions for equation (3.7), we need the following result (see for instance [2], Th. 3.17
p. 105 and Prop. 3.2 p. 67):

Theorem 1. Let H be a Hilbert space, A a maximal monotone operator on H with dense domain D(A) and
L a lipschitz operator defined on H. Then for all U0 ∈ D(A), there exists a unique function U : [0,+∞[→ H
satisfying:

(i) U(0) = U0 ,
(ii) U(t) ∈ D(A) for all t ≥ 0,
(iii) ∀T > 0, U ∈W 1,∞ ((0, T ),H) ,

(iv)
dU

dt
(t) +AU(t) + LU(t) = 0 for a.e. t ∈ [0,+∞[.

Now we are ready to prove:

Theorem 2. Assume (3.8). Then for all U0 ∈ D(A0), equation (3.7) admits a unique strong solution t 7→ U(t)
satisfying

∀t ≥ 0, U(t) ∈ D(A0) and ∀T > 0, U ∈W 1,∞ ((0, T ),H) .

Set, for all t ≥ 0 and for all U0 ∈ D(A0), S(t) (U0) = U(t). Then (S(t))t≥0 can be extended to a (possibly non

contractive) semigroup of strongly continuous operators on H.

Proof. The essential argument relies on an a priori estimate, which enables us to write A0 as the sum of a
maximal monotone operator and a lipschitz operator and then use Theorem 1.

Given any U0 ∈ D(A0), a solution U = (y, z, η, ξ) of (3.7) satisfies〈
dU

dt
, U

〉
= 〈−A0U,U〉 − 〈B(U), U〉 = −

1

m
f(η)η ≤ 0

so that 1
2 ‖U(t)‖2 is non increasing. Thus,

‖U(t)‖2 ≤ ‖U(0)‖2 = ‖U0‖
2
. (3.12)

In particular, by (3.3), |η(t)| ≤ 1√
m
‖U0‖ = K. This shows that the values of f out of IK = [−K,K] have

no influence on equation (3.7). In other terms, let us give any f̄ which coincides with f on IK and set B̄ the
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operator defined on H by B̄(U) =
(
0, 0, 1

m
f̄(η), 0

)
. Then any solution Ū of

dŪ

dt
+A0Ū + B̄

(
Ū
)

= 0, Ū(0) = U0 (3.13)

is a solution of (3.7) and vice versa.

Now, according to (3.8)(ii), there exists cK ≥ 0 such that f(s)−f(s′)
s−s′ ≥ −cK on IK . Thus, the function f1:

s 7→ f(s) + cK s is non decreasing on IK . Let f̄1 be any continuous non decreasing extension of f1 to IR and
define f̄ : s 7→ f̄1(s) − cK s. As previously said, the resolution of (3.7) is equivalent to the resolution of (3.13)
with B̄ associated to that f̄ .

Next, write B̄ = B1 + L, where B1(U) =
(
0, 0, 1

m
f1(η), 0

)
and L(U) =

(
0, 0,− 1

m
cK η, 0

)
. Operator L is

clearly lipschitz on H and it is easy to check that B1, with domain H, is a maximal monotone operator on H.
It then follows from [4], Corollary 2.7, p. 36, that A = A0 +B1 with domain D(A0) is maximal monotone on H.
Thus, the existence, uniqueness and regularity of a solution for equation (3.13), and consequently (3.7), follows
from Theorem 1.

Next, A0 being a linear maximal monotone operator, its domain D(A0) is dense in H. Finally, let us give
R > 0. According to the a priori estimate discussed above and adopting the same notations, there exist a
maximal monotone operator A with domain D(A0) and a lipschitz operator L, both depending on R, such that
for every (U0, V0) ∈ D(A0)2 whose H-norm are less than R, the solutions U(t), V (t) of (3.7) with respective
initial conditions U0, V0 coincide with the solutions Ū(t), V̄ (t) of (3.13) with the same resp. initial conditions.

We then have〈
dU

dt
−
dV

dt
, U − V

〉
=

〈
dŪ

dt
−
dV̄

dt
, Ū − V̄

〉
= −〈AŪ −AV̄ , Ū − V̄ 〉−〈L

(
Ū
)
−L

(
V̄
)
, Ū−V̄ 〉 ≤ c

∥∥Ū − V̄ ∥∥2
= c ‖U − V ‖2 ,

where c is the lipschitz constant of L; this shows that the function

t 7→ e−2ct ‖U(t)− V (t)‖2

is non increasing. Hence, ‖U(t)− V (t)‖ ≤ ect ‖U0 − V0‖ i.e.

‖S(t) (U0)− S(t) (V0)‖ ≤ ect ‖U0 − V0‖ .

This lipschitz property of the operators S(t) on every H-bounded subset of D(A0) leads easily to the extension
of S(t) into a bounded operator on H, with the semigroup property.

To end this section, let us precise the exact connexion between system (3.1) and equation (3.7):

Proposition 1. For all U0 = (y0, z0, η0, ξ0) ∈ D(A0), the solution t 7→ U(t) = (y(., t), z(., t), η(t), ξ(t)) of (3.7)
is such that:

(i) ∀T > 0, y ∈W 2,∞
(
(0, T ), L2(0, 1)

)
∩W 1,∞

(
(0, T ),H1(0, 1)

)
,

(ii) ∀T > 0, η, ξ ∈W 1,∞ ((0, T ), IR) , ∀t ≥ 0, y(, .t) ∈ H2(0, 1),
(iii) for a.e. (x, t) ∈ (0, 1)× IR+, ytt(x, t) − (a(x)yx(x, t))x = 0,
(iv) for a.e. t ∈ IR+, η(t) = yt(0, t), ξ(t) = yt(1, t)
(v) a(0)yx(0, t)−mη′(t) = αy(0, t) + f(yt(0, t))
(vi) a(1)yx(1, t) +Mξ′(t) = 0,
(vii) y(., 0) = y0, yt(., 0) = z0 .

Moreover, the function E[U0] : t 7→ 1
2 ‖U(t)‖2 has a derivative on IR+ and

E[U0]′(t) = yt(0, t)f(yt(0, t)) ≤ 0. (3.14)
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Proof. It’s a direct interpretation of operators A0 and B. Regularity is provided by Theorem 2. However,
without more regularity for y, no sense can a priori be given neither to ytt(0, t) nor too yt(1, t). Lastly, (3.14)
follows from the regularity of y and an integration by parts as already observed in (3.12).

4. Strong stabilization

A standard method in that kind of dissipative system is to use La Salle’s invariance principle, as in [6]. This
requires usually the contraction property of the semigroup associated to the system, which is lacking in our
case. As it can be easily shown, the non decreasingness of the feedback law f would imply the contraction of
the semigroup, since c can be taken as zero in the proof of Theorem 2. In fact, we may have contraction in a
certain sense with only local monotonicity for f around zero.

Let us consider these properties:

(4.1) there exists δ > 0 such that f is strictly increasing on ] − δ, δ[,
(4.2) there exists δ > 0 such that f is strictly increasing on ]0, δ[,

and f(s) = 0 for all s ≤ 0,
(4.3) there exists δ > 0 and D > 0 such that f is strictly increasing on

]0, δ[ and on ]−D − δ,−D[ and f(s) = 0 for all s ∈ [−D, 0].

The intervals ]− δ, δ[ in (4.1), ]−∞, δ[ in (4.2) and ]−D− δ, δ[ in (4.3 )will be called domain of monotonicity
of f .

The main result of the paper is the following:

Theorem 3. Assume (3.8) and either (4.1, 4.2, 4.3). Then for all U0 ∈ D(A0), the solution t 7→ U(t) of (3.7)
satisfies:

‖U(t)‖ → 0 as t→ +∞ .

Let us sketch the outlines of the proof: the essential idea is to show that for large enough t, S(t) acts on U0 as
a contractive semigroup. This will be a consequence of the decisive Lemma 4. Proof of Theorem 3 will then
follow from Theorem 4 concerning stabilization of a contractive semigroup by means of La Salle’s invariance
principle.

Lemma 4 is mainly due to the estimations of Lemma 3, which are the consequence of the introduction of the
Riemann invariants of Lemma 2. Let us now pass to the details.

Lemma 2. Let y, with the regularity of Proposition 1 (i) and (ii), be a solution on (0, 1) × IR+ of the wave
equation

ytt − (c2yx)x = 0,

with c ∈ H1(0, 1) and c(x) ≥ c0 > 0. Let ϕ be a primitive of − 1
c

, K a constant which is greater than
max
x∈[0,1]

|ϕ(x) − ϕ(0)| and define the functions g and h by:

g(x, t) = yt(x, t+ ϕ(x) − ϕ(0) +K) + c(x)yx(x, t+ ϕ(x) − ϕ(0) +K),

h(x, t) = yt(x, t− ϕ(x) + ϕ(0) +K)− c(x)yx(x, t − ϕ(x) + ϕ(0) +K).

Then for a.e. (x, t) ∈ (0, 1)× IR+:

gx(x, t) = −c′(x)yx(x, t+ ϕ(x) − ϕ(0) +K)

hx(x, t) = c′(x)yx(x, t− ϕ(x) + ϕ(0) +K).

The proof is immediate. It should be noticed that in case c is constant, one recovers the classical Riemann’s
invariants, namely: yt(x, t)± cyx(x, t) is constant along the characteristics x± ct =constant. In fact, only g will
be later used.

From now on, we fix U0 ∈ D(A0) and use notations of Proposition 1.
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Lemma 3. There exist constants β and γ > 0, depending quadratically on ‖U0‖ on the coefficient a and on the
function f as well as a constant K > 0 depending on a such that for any bounded interval I ⊂ IR+,∫

I

η′(t+K)dt ≤ β |I|+ γ. (4.4)

Proof. Obviously, we have already from the dissipativity (3.14):
∣∣y2(0, t)

∣∣ ≤ 1
α
‖U0‖

2
,
∣∣y2
t (0, t)

∣∣ ≤ 1
m
‖U0‖

2
,

and by the continuity of f ,
∣∣f2(yt(0, t))

∣∣ ≤ M0 = max |f |2 on the interval [− 1√
m
‖U0‖ ,

1√
m
‖U0‖]. Hence the

following inequalities hold ∫
I

y2(0, t)dt,

∫
I

y2
t (0, t)dt,

∫
I

f2(yt(0, t))dt ≤ β |I|+ γ (4.5)

for suitable constants β and γ. So according to Proposition 1(v), it is sufficient to prove that the estimate∫
I

y2
x(0, t)dt ≤ β |I|+ γ (4.6)

holds. For that purpose, we shall make use of Lemma 2 where we set c =
√
a which, according to (2.2) and [6]

Corollary VIII.10 p. 131 , belongs to H1(0, 1) and satisfies c(x) ≥ c0 > 0.
We use the notations of Lemma 2. Writing g(x, t) − g(x, 0) =

∫ x
0
gx(s, t)ds and applying Cauchy Schwarz’s

inequality, one obtains

g2(0, t) ≤ 2

(
g2(x, t) +

[∫ 1

0

|gx(s, t)| ds

]2
)
.

Consequently, for any interval I = [A,A+ T ] ⊂ IR+ we have:

∫ A+T

A

g2(0, t)dt =

∫ 1

0

∫ A+T

A

g2(0, t)dtdx ≤ 2

[∫ 1

0

∫ A+T

A

g2(x, t)dtdx +

∫ A+T

A

(∫ 1

0

|gx(s, t)| ds

)2

dt

]

≤ 4

∫ 1

0

∫ A+T

A

[
y2
t (x, t+ ϕ(x) − ϕ(0) +K) + c2(x)y2

x(x, t+ ϕ(x) − ϕ(0) +K)
]
dtdx

+ 2

∫ A+T

A

(∫ 1

0

|c′(s)yx(s, t+ ϕ(s)− ϕ(0) +K)| ds

)2

dt. (4.7)

Let us note 4I1 + 2J1 the right hand side of (4.7). Setting x = s and applying Cauchy-Schwarz’s inequality, we
have

J1 ≤

∫ 1

0

c′
2
(x)dx

∫ A+T

A

∫ 1

0

y2
x(x, t+ ϕ(x) − ϕ(0) +K)dxdt

= ‖c′‖
2
L2

∫ 1

0

∫ A+T

A

y2
x(x, t+ ϕ(x) − ϕ(0) +K)dtdx.

With x being fixed, the change of variable v = t+ ϕ(x) − ϕ(0) +K (with respect to t) leads to∫ A+T

A

y2
x(x, t+ ϕ(x)− ϕ(0) +K)dt =

∫ A+T+ϕ(x)−ϕ(0)+K

A+ϕ(x)−ϕ(0)+K

y2
x(x, v)dv. (4.8)
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Thanks to the choice of K, ϕ(x) − ϕ(0) +K ≥ 0; moreover, there exists a constant C2, depending only on the
function ϕ such that ϕ(x) − ϕ(0) +K ≤ C2. In other words,

[A+ ϕ(x) − ϕ(0) +K,A+ T + ϕ(x) − ϕ(0) +K] ⊂ [A,A+ T + C2]

and y2
x being ≥ 0, (4.8) gives∫ A+T

A

y2
x(x, t+ ϕ(x) − ϕ(0) +K)dt ≤

∫ A+T+C2

A

y2
x(x, v)dv.

Thus,

J1 ≤ ‖c
′‖

2
L2

∫ 1

0

∫ A+T+C2

A

y2
x(x, v)dv. (4.9)

Proceeding in the same fashion for I1, we get:

I1 ≤

∫ 1

0

∫ A+T+C2

A

[
y2
t (x, v) + c2(x)y2

x(x, v)
]
dvdx. (4.10)

Inserting estimates (4.9) and (4.10) into (4.7) yields∫ A+T

A

g2(0, t)dt ≤ 4

(∫ 1

0

∫ A+T+C2

A

[
y2
t (x, v) + c2(x)y2

x(x, v)
]
dvdx

+ ‖c′‖
2
L2

∫ 1

0

∫ A+T+C2

A

y2
x(x, v)dxdv

)
. (4.11)

Using the fact that c(x) ≥ c0 > 0 as well as Fubini’s theorem, we deduce from (4.11) the estimate∫ A+T

A

g2(0, t)dt ≤ C

(∫ A+T+C2

A

∫ 1

0

[
y2
t (x, v) + c2(x)y2

x(x, v)
]
dxdv

)
, (4.12)

the constant C depending only on the function c =
√
a.

Finally, according to the definition of ‖.‖ and using (3.12), we get∫ A+T

A

g2(0, t)dt ≤ C

∫ A+T+C2

A

‖U0‖
2
dv = C(T + C2) ‖U0‖

2
. (4.13)

As g(0, t) = yt(0, t + K) + c(0)yx(0, t + K), we obtain (4.6) using the second estimate of (4.5) and proof of
Lemma 3 is complete.

Lemma 4. There exists a time t0 > 0, depending only on U0 , such that for all t ≥ t0, yt(0, t) belongs to the
domain of monotonicity of f .

Proof. Fix any d > 2
δ

(
1
α
‖U0‖

) 1
2 , where δ is defined in (4.1-4.3), consider any sequence (an) of limit +∞ and

define the sequence of functions (vn) on [0, d] by

vn(t) = η(t+ an +K) = yt(0, t+ an +K).

According to Proposition 1 (ii), vn ∈ H1(0, d) and thanks to (4.4), (vn) is a bounded sequence in H1(0, d). Due
to the compactness of the injection H1(0, d) ↪→ C([0, d]), there exists a subsequence, still noted (vn), converging
uniformly to a continuous function v on [0, d].
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Next, we prove that f(v(t)) is identically 0 on [0, d]. For that purpose, we observe that v cannot satisfy
min |v| ≥ δ , otherwise

dδ > 2

(
1

α
‖U0‖

) 1
2

≥ |y(0, an + d+K)− y(0, an +K)|

=

∣∣∣∣∣
∫ an+K+d

an+K

yt(0, t)dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ d

0

vn(t)dt

∣∣∣∣∣ −→n→∞
∣∣∣∣∣
∫ d

0

v(t)dt

∣∣∣∣∣ ≥ dδ,
which is a contradiction. Thus

L = v([0, d])∩]− δ, δ[ is a nonvoid interval. (4.14)

On the other hand, (3.14) gives, since sf(s) ≥ 0,∫ +∞

0

yt(0, t)f(yt(0, t))dt ≤ E(0) < +∞, (4.15)

which implies

lim
n→+∞

∫ an+K+d

an

yt(0, t)f(yt(0, t))dt = 0.

Hence, ∫ d

0

v(t)f(v(t))dt = lim
n→+∞

∫ d

0

vn(t)f(vn(t))dt

= lim
n→+∞

∫ an+K+d

an

yt(0, t)f(yt(0, t))dt = 0.

Since t 7→ v(t)f(v(t)) is continuous and ≥ 0, we deduce that for all t ∈ [0, d],
v(t)f(v(t)) = 0 and as f(0) = 0,

∀t ∈ [0, d], f(v(t)) = 0. (4.16)

For the rest of the proof of Lemma 4, we distinguish three cases.

• If f satisfies (4.1), then (4.14) together with (4.16) gives L = {0}, therefore v([0, d]) = {0} i.e. v ≡ 0.
The sequence (an) being arbitrary, we deduce easily

yt(0, t)−→
t→∞

0.

Otherwise, there would exist ε > 0 and a sequence tn → +∞ such that |yt(0, tn +K)| ≥ ε. The sequence
vn : t 7→ yt(0, tn + t + K) on [0, d] would converge (after extraction of a subsequence) to zero uniformly
on [0, d]. In particular, vn(0)→ 0 as n→ +∞; but |vn(0)| = |yt(0, tn +K)| ≥ ε, which is a contradiction.

Lemma 4 is then proven in that case, since |yt(0, t)|<δ for large enough t.
• If f satisfies (4.3), we deduce from (4.14) and (4.16) that:

v([0, d]) ∩ [0, δ[ = {0} and v([0, d]) ∩ ]−D − δ, 0[⊂ [−D, 0[.

Obviously, this implies that v([0, d]) ⊂ [−D, 0]. Using the same argument as in the previous case, there
can’t exist ε > 0 and arbitrary large t such that yt(0, t+K) ≥ ε or yt(0, t+K) ≤ −D− ε. Thus, for large
enough t, yt(0, t+K) ∈ [−D − δ, δ].



132 E. FEIREISL AND G. O’DOWD

• If f satisfies (4.2), the proof is quite the same.

Proof of Lemma 4 is now complete.

At this stage, we are able to recover the general setup of a contractive semigroup as follows: consider any non
decreasing continuous function f̄ on IR which coincides with f on its domain of monotonicity. In particular,

∀s > 0, f̄(s) > 0. (4.17)

Define, as in the proof of Theorem 2, the operator B̄: U 7→
(
0, 0, 1

m f̄(η), 0
)

on H, which is maximal monotone;

the operator A0 + B̄, with domain D(A0), being maximal monotone on H, the equation of evolution

dŪ

dt
+ (A0 + B̄)Ū = 0, Ū(0) = Ū0 (4.18)

possesses a unique solution for all U0 ∈ D(A0) with the regularity

(i) ∀t ≥ 0, Ū(t) ∈ D(A0)

(ii) Ū ∈W 1,∞((0,+∞),H) ∩ L∞((0,+∞), D(A0))
(4.19)

given by Ū(t) = S̄(t)Ū0, where
(
S̄(t)

)
t≥0

is the contractive semigroup associated to operator A0 + B̄.

Considering the solution of (4.18) with the initial condition Ū(0) = U(t0), state of the solution of (3.7) at
instant t0 for which yt(0, t) ‘enters’ in the domain of monotonicity of f , we see that for all t ≥ 0, Ū(t) = U(t+t0),
thanks to the definition of f̄ and the uniqueness of the Cauchy problem associated to an evolution equation
governed by a maximal monotone operator.

Thus, Theorem 3 will be a consequence of

Theorem 4. For all Ū0 ∈ D(A0), the solution Ū of (4.18) satisfies∥∥Ū(t)
∥∥−→
t→∞

0.

Proof of Theorem 4 is somewhat classical: we first establish in Lemma 5 that the ω-limit sets are non empty
and consider the solutions of (4.18) of constant energy in Lemmas 6 and 7. We then conclude applying
La Salle’s principle.

Lemma 5. (i) The canonical embedding from D(A0), equipped with the graph norm, into H is compact.
(ii) For all Ū0 ∈ D(A0), the set ω(Ū0) = {W̄ ∈ H/∃(tn)→ +∞ such that Ū(tn)→ W̄} is non empty, included
in D(A0), invariant under the action of

(
S̄(t)

)
t≥0

and satisfies dist
(
S̄(t)(Ū0), ω(Ū0)

)
→ 0 as t→ +∞.

(iii) For all Ū0 ∈ D(A0) and for all W̄ ∈ ω(Ū0) , t 7→
∥∥S̄(t)W̄

∥∥2
is constant.

Proof. We see easily from the definition of operator A0 that the graph topology is equivalent to the topology
endowed by the injection of D(A0) in H2(0, 1)×H1(0, 1)× IR2, hence (i).
(ii) follows from classical dynamical systems theory and (iii) from La Salle’s principle applied to the Lyapounov
functional t 7→ E(t).

In the following lemma, we determine the solutions of (4.18) of constant energy in the case corresponding to
assumption (4.1).

Lemma 6. Let Ū(t) =
(
ȳ(., t), z̄(., t), η̄(t), ξ̄(t)

)
be a solution of (4.18) with the regularity (4.19) such that

∀t ≥ 0, ȳt(0, t) = 0.

Then ȳ is identically zero.
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The proof is based on a multiplier method. For the details, we refer to [6] or [5].

Next, we consider the solutions of (4.18) of constant energy in the cases corresponding to assumptions (4.2)
or (4.3).

Lemma 7. Let Ū(t) =
(
ȳ(., t), z̄(., t), η̄(t), ξ̄(t)

)
be a solution of (4.18) with the regularity (4.19) such that

∀t ≥ 0, ȳt(0, t) ≤ 0 and f̄(ȳt(0, t)) = 0.

Then ȳt(0, t)→ 0 as t→ +∞.

Proof. As for equation (3.7), we have
∥∥Ū(t)

∥∥ ≤ ∥∥Ū(0)
∥∥ and then |ȳ(0, t)| ≤ 1√

α

∥∥Ū(0)
∥∥. Since ȳt(0, t) ≤ 0, we

deduce that ȳ(0, t) is nonincreasing and bounded on IR+ so that

l = lim
t→+∞

ȳ(0, t)

exists. Moreover, since ȳtt − (aȳx)x = 0, we have, for all T > 0,

0 =

∫ 1

0

∫ T

0

(ȳtt − (aȳx)x) dtdx =

∫ 1

0

[ȳt(x, t)]
T
0 dx−

∫ T

0

[aȳx(x, t)]
1
0 dt

=

∫ 1

0

(ȳt(x, T )− ȳt(x, 0)) dx−

∫ T

0

aȳx(1, t)dt+

∫ T

0

aȳx(0, t)dt

=

∫ 1

0

(ȳt(x, T )− ȳt(x, 0)) dx+M

∫ T

0

ξ̄′(t)dt+

∫ T

0

(mη̄′(t) + αȳ(0, t)) dt

=

∫ 1

0

(ȳt(x, T )− ȳt(x, 0)) dx+Mȳt(1, t)−Mȳt(1, 0) +mȳt(0, T )−mȳt(0, 0) +

∫ T

0

αȳ(0, t)dt.

Thus,

∫ T

0

αȳ(0, t)dt = −

[∫ 1

0

[ȳt(x, T )− ȳt(x, 0)] dx+Mȳt(1, T )−Mȳt(1, 0) +mȳt(0, T )−mȳt(0, 0)

]
. (4.20)

From (4.19), we deduce easily that
∫ 1

0
[ȳt(x, T )− ȳt(x, 0)] dx is bounded independently of T , as well asMȳt(1, T )−

Mȳt(1, 0) +mȳt(0, T )−mȳt(0, 0). We then deduce from (4.20) that∣∣∣∣∣
∫ T

0

ȳ(0, t)dt

∣∣∣∣∣ is bounded independently of T, (4.21)

which is only compatible with l = 0. And since ȳ(0, t) is non increasing, we deduce that ȳ(0, t) ≥ 0 and∫ +∞

0

ȳ(0, t)dt < +∞. (4.22)

Integrating by parts gives ∫ T

0

ȳ2
t (0, t)dt = [ȳ(0, t)ȳt(0, t)]

T
0 −

∫ T

0

ȳ(0, t)η̄′(t)dt, (4.23)
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and from (4.19) we have η̄ ∈W 1,∞(IR+, IR), so |η̄′| ≤ C2 and we deduce from (4.23) that∫ T

0

ȳ2
t (0, t)dt ≤ C0C1 + C2

∫ +∞

0

ȳ(0, t)dt; (4.24)

this shows that ∫ +∞

0

ȳ2
t (0, t)dt < +∞. (4.25)

As in the proof of Lemma 4, consider any sequence an → +∞ and the sequence of functions (v̄n) defined on
[0, 1] by v̄n(t) = η̄(t+ an) = ȳt(0, t+ an). Since η̄ and η̄′ are bounded on IR+,∫ 1

0

v̄2
n(0, t)dt =

∫ an+1

an

η̄2(t)dt ≤ C3 ,

∫ 1

0

v̄′
2
n(0, t)dt =

∫ an+1

an

η̄′
2
(t)dt ≤ C4 .

Thus, (v̄n) is a bounded sequence in H1(0, 1) and there exists a subsequence, still noted (v̄n), which converges
uniformly to a continuous function v̄ on [0, 1]. Hence,∫ 1

0

v̄2(t)dt = lim
n→+∞

∫ 1

0

v̄2
n(t)dt = lim

n→+∞

∫ an+1

an

ȳ2
t (0, t)dt

and thanks to (4.25), this last limit is zero, so we deduce that v̄ is identically zero on [0, 1] which means that
ȳt(0, t+ an) vanishes uniformly on [0, 1]. The sequence (an) being arbitrary, we deduce that

ȳt(0, t)−→
t→∞

0.

Let us finally return Theorem 4 which will be entirely proved, according to Lemma 5(ii), when we show that
ω(Ū0) = {0} for all Ū0 ∈ D(A0).

Let Ū1 ∈ ω(Ū0) and define V̄ (t) = S̄(t)Ū1 =
(
ȳ(., t), z̄(., t), η̄(t), ξ̄(t)

)
the solution of (4.18) with initial

condition Ū1. According to Lemma 5(iii), t 7→
∥∥V̄ (t)

∥∥2
is constant; its derivative−2ȳt(0, t)f̄ (ȳt(0, t)) is therefore

zero which means according to (4.17) that

∀t ≥ 0, ȳt(0, t) ≤ 0 and f̄ (ȳt(0, t)) = 0.

We deduce from Lemma 7 that

ȳt(0, t)−→
t→∞

0. (4.26)

Consider now any Ū2 ∈ ω
(
Ū1

)
and a sequence tn → +∞ such that S̄(tn)Ū1 → Ū2 when n → +∞, and define

W̄ (t) =
(
ȳ2(., t), z̄2(., t), η̄2(t), ξ̄2(t)

)
= S̄(t)Ū2. Fix any t ≥ 0; since S̄(t) is a continuous operator on H for all

t ≥ 0, we have

V̄ (t+ tn) = S̄(t)
(
V̄ (tn)

)
= S̄(t)

(
S̄(tn)Ū1

)
−→
n→∞

S̄(t)Ū2 = W̄ (t).

In particular, looking at the third components,

ȳt(0, t+ tn)−→
n→∞

η̄2(t).
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Comparison with (4.26) yields η̄2(t) = 0. Thus η̄2 ≡ 0 and by Lemma 6, W̄ ≡ 0.

To conclude, let us observe that, in the one hand,
∥∥V̄ (t+ tn)

∥∥2
is constant equal to

∥∥V̄ (0)
∥∥2

=
∥∥Ū1

∥∥2
and,

in the other hand, is converging to
∥∥W̄ (t)

∥∥2
which is zero. So Ū1 = 0 and proof of Theorem 4 is complete.

Remark: the semigroup (S(t))t≥0 being possibly non contractive, we cannot use any density argument to
deal with convergence, weak or strong, of weak solutions and the method used in Lemma 4 requires too much
regularity for the weak solutions. The asymptotic behaviour of weak solutions is an open question.
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