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ANALYTIC CONTROLLABILITY OF THE WAVE EQUATION

OVER A CYLINDER

Brice Allibert
1

Abstract. We analyze the controllability of the wave equation on a cylinder when the control acts on
the boundary, that does not satisfy the classical geometric control condition. We obtain precise esti-
mates on the analyticity of reachable functions. As the control time increases, the degree of analyticity
that is required for a function to be reachable decreases as an inverse power of time. We conclude that
any analytic function can be reached if that control time is large enough. In the C∞ class, a precise
description of all reachable functions is given.

Résumé. On donne des estimations sur l’analycité nécessaire pour qu’une fonction soit contrôlable
en temps fini sur un cylindre pour l’équation des ondes. Cette valeur décroit polynomialement avec T .
On en déduit que toute fonction analytique peut être contrôlée en un temps assez grand. On donne de
plus une description précise des fonctions C∞ qui sont contrôlables de cette façon.
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1. Introduction

In this paper, we consider the control problem for the wave equation over a cylindrical surface. We denote this
surface C and we suppose, for the sake of simplicity, that its radius is 1 and its length π. We can parameterize
C in R3 by x2 + y2 = 1 and z ∈ (0, π). We will also denote x = cos θ and y = sin θ so that (z, θ) ∈ (0, π)× S1 is
a set of coordinates over C.

The controlled part of the boundary will be Γ = ∂C ∩ {z = 0}. Thus the uniqueness time for this problem
(i.e. the time that is needed to guarantee that a solution of the wave equation vanishing on Γ with its normal
derivative, vanishes everywhere) is Tu = 2π. As usual, we shall denote E0 = H1

0 (C) ⊕ L2(C) and E−1 =
L2(C) ⊕H−1(C).

The goal of this paper is to give results about the space FT of controlled functions in time T > Tu, e.g. the
set of all functions u in E−1 for which there exists a control g(θ, t) in L2(Γ× (0, T )) such that the solution of
problem ∣∣∣∣∣∣

2u = 0 over C × (0, T )
(u, ∂tu)|t=0 = u
u|∂C×(0,T ) = g1Γ×(0,T )

(1.1)
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satisfies

(u, ∂tu)|t=T = 0.

Let us introduce a few more notations in order to state our theorems. For any positive real number α, we will
denote

G0,α =

u(z, θ) =
∑
n,k

αn,ke
−α|n| sinkzeinθ | (αn,k)n,k ∈ l

2


G−1,α =

u(z, θ) =
∑
n,k

αn,ke
−α|n| sinkzeinθ |

(
αn,k√
n2 + k2

)
n,k

∈ l2


Gα = G0,α ×G−1,α.

It is easily seen that if α′ ≥ α then Gα′ ⊂ Gα and that G0 = E−1.

Let us remark that all the elements of Gα are holomorphic on the complex band |=m θ| < α. Conversely,
if a function u(z, θ) =

∑
n,k αn,k sin kz einθ of L2((0, π) × S1) is holomorphic on a band |=m θ| < α + ε for a

positive ε, then we can prove that it belongs to G0,α and G−1,α.

Proof. Indeed, the function v(x, θ) 7→ u(x, θ + iα) belongs to L2((0, π) × S1). So the sequence (βn,k) of its
Fourier coefficients belongs to l2(Z× N). Now by analyticity and periodicity,

βn,k =

∫
v(x, θ)e−inθ sin kz dθ dz

=

∫
v(x, θ − iα)e−in(θ−iα) sinkz dθ dz

= e−nα
∫
u(x, θ)e−inθ sin kz dθ dz

= e−nααn,k.

So the sequence (e−nααn,k) belongs to l2. For symmetric reasons, the sequence (e+nααn,k) also does. So

(e|n|ααn,k) belongs to l2.

Hence

u =
∑
n,k

γn,ke
−|n|α sin kz einθ,

with (γn,k) ∈ l2(Z× N). So u belongs G0,α. It is easy to see that it also belongs to G−1,α. �

In order to give quantitative results about FT , we introduce the value

αC(T ) = inf{α ∈ R+ such that Gα ⊂ FT }·

We know (see [1] and [2]) that for any time T > Tu,

αC(T ) ≤ π.
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This means that any initial condition that can be continued as an holomorphic function with respect to θ over
the band |=m θ| ≤ π + ε can be controlled in any time T > Tu.

In this paper, we will improve this result by proving the following two theorems

Theorem 1.1. For any positive number δ, there is a constant Cδ such that for any time T > Tu,

αC(T ) ≤
Cδ

T 1−δ
·

Theorem 1.2. There exists a constant c such that for any time T > Tu,

αC(T ) ≥
c

T 2
·

Notice that Theorem 1.1 implies that any analytic initial condition belongs to some FT for T large enough.

Namely, if we denote F∞ =
⋃
T

FT ,

Cω × Cω ⊂ F∞. (1.2)

Melrose and Sjöstrand have proved that the analytic wave front of a solution of the wave equation propagates at
the speed of light along the geodesics of the surface. (A simple definition of the analytic wave front set is given
in Sect. 3.1.) In our case, it means that the analytic wave front of a solution of problem (1.1) will propagate
until it reaches the boundary (at least).

The orthogonal sections of the cylindrical surface are geodesics that never hit the boundary. So if the analytic
wave front set of the initial data of problem (1.1) contains a point on one of these geodesics, it will propagate,
without ever hitting the boundary. So at any time T , u|t=T or ∂tu|t=T will have at least one point in its analytic
wave front. Therefore, it will never be 0. Hence, no such function can belong to FT , even if T is very big. This
means that these functions do not belong to F∞.

We will prove in this article that up to a periodisation of the problem that is needed to define the wave front
at the boundary, these are the only functions of C∞ that do not belong to F∞, which gives us a geometric
description of this space.

To be more precise, for any distribution u(z, θ) in H−1((0, π) × S1), let us denote Pu the distribution in
D′(R× S1) obtained by putting first, for z ∈ (0, π), u(π + z) = −u(π − z) and then by putting for any integer
k, u(z + 2kπ) = u(z). Considering Pu allows us to see the singularities of u on the boundary of the cylinder.
Then we have the following theorem:

Theorem 1.3. If u belongs to E−1, if Pu belongs to C∞×C∞ and has no analytic wave front in the direction
of the captive geodesics, then u belongs to F∞

Notice that this includes (1.2) because if u is analytic, then Pu has no wave front at all!
In the first section, we will prove Theorem 1.1; in the second one, we will show that a little improvement of

this proof lets us prove Theorem 1.3. In the last section, we will prove Theorem 1.2 and give an explicit value
for the constant c.

2. Proof of Theorem 1.1

In order to prove this theorem, we will study the following observation problem, that is adjoint to (1.1)
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∣∣∣∣∣∣
2u = 0 over C × Rt
u|∂C×Rt = 0
(u, ∂tu)|t=0 = u ∈ E0.

(2.1)

Let us denote

Ku =
∂u

∂n
|Γ×Rt .

We will use the HUM method to turn observation estimates for problem (2.1) into control properties for
problem (1.1).

In problem (2.1), we can separate the variables θ and z, by using Fourier series. Let us give a few definitions
with this respect

Definition 2.1. Let u =

∑
n∈Z
k∈N∗

αjn,k sinkz einθ


j=1,2

be an initial data in E0. We shall denote

u ∈ En0 if m 6= n⇒ αjm,k = 0,

u ∈ E(1)
0 if |k| > |n| ⇒ αjn,k = 0,

u ∈ E
(2)
0 if |k| ≤ |n| ⇒ αjn,k = 0,

u ∈ Ei,n0 ⇔ u ∈ E(i)
0 ∩E

n
0 .

The space E0 can be split into


E0 =

(⊕
n

E1,n
0

)⊕(⊕
n

E2,n
0

)
u = u1 + u2 =

∑
n

(u1,n + u2,n)

We will call u1 the “low frequency term” and u2 the “high frequency term”.

These two sequences of vectors form an Hilbert basis for E0

e1
n,k =

(√
2

π

sin kz einθ
√

1 + k2 + n2
, 0

)
; e2

n,k =

(
0,

√
2

π
sin kz einθ

)
.

For any n, we will restrict the initial data to functions of En0 and estimate the constants that appears in the
usual observation inequalities

||u||2E0
≤ C(n, T )||Ku||2L2(Γ×(0,T )),

(see for instance [4]). As the Bardos-Lebeau-Rauch geometric control hypothesis does not hold, we do not
expect these constants C(n, T ) to be bounded in n. We will see that the way they go to the infinity is closely
related to the size of the space of controlled data, through the HUM method.

The estimates will have to take into account both the high frequency and the low frequency term. For the
former, the eigenfrequencies are well separated, and a usual Ingham technique will provide us the required
estimate. The other term is more complicated, as the gap between eigenfrequencies goes to zero when n goes
to the infinity. This part of the spectrum will require a more sophisticated proof, based upon the technique of
biorthogonal sequences.

At first, we will give the estimates and show how we can prove the theorem out of them. Then, we will prove
those estimates.
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Here is the main proposition upon which our proof will be based.

Proposition 2.2. (low frequency estimate). For any positive ε and δ, there exist a time T1(ε, δ) smaller than
Cδ
ε1+δ and a positive constant Cε,δ such that for any integer n and any initial condition u in En0 , the solution u
of problem (2.1) satisfies

||u1||2E0
≤ Cε,δ e

2ε|n|

∫
S1

∫ T1(ε,δ)

−T1(ε,δ)

|Ku(θ, t)|2 dt dθ.

We will show this proposition later on. Let us first see how we can prove Theorem 1.1 out of them. To do this
we will need a few more ingredients. First, a little lemma that we can show right now

Lemma 2.3. (High frequency estimate). For any time T > 2
√

2, there is a constant CT such that for any

integer n and any initial condition u in E2,n
0 , the solution u of problem (2.1) satisfies

||u||2E0
≤ CT ||Ku||

2
L2(Γ×(0,T )).

Proof. It is a mere application of the classical Ingham technique. As u belongs to E
(2)
0 , u(z, θ, t) can be written

as
u(z, θ, t) =

∑
k>|n|

α±n,k sin kz einθe±it
√
n2+k2

.

Now, as T > 2π
√

2 > 2π

infk>|n|(
√
n2+(k+1)2−

√
n2+k2)

,

∫
S1

∫ T

0

∣∣∣∣∂u∂z (z = 0, θ, t)

∣∣∣∣2 dt dθ = 4π2

∫ T

0

∣∣∣∣∣∣
∑
k>|n|

kα±n,ke
±it
√
n2+k2

∣∣∣∣∣∣
2

dt, ≥ C
∑
k>|n|

|kα±n,k|
2,

(see [8] p. 222 for a detailed proof of the Ingham estimate for series with gaps).
So ∫

S1

∫ T

0

∣∣∣∣∂u∂z (z = 0, θ, t)

∣∣∣∣2 dt dθ ≥ C
∑
k>|n|

|(1 + |n|+ k)α±n,k|
2 ≥ C||u||2E0

.

Hence,
||Ku||2L2(Γ×(0,T )) ≥ C||u||

2
E0
.

�
We will also need the following caracterisation of FT by the HUM method

Lemma 2.4. An initial data v of E−1 belongs to FT if and only if there exists a constant Cv such that for any
initial data u in E0, the solution u of problem (2.1) satisfies

| 〈v, u〉E−1,E0
| ≤ Cv||Ku||L2(Γ×(0,T )).

The proof of this lemma can be found in [6] or [4].

Now let us prove the theorem. Pick a positive value for δ and ε, and take v in Gε. We can put

v(z, θ) =
∑
n

e−ε|n|V n(z)einθ,

with
(
||V n(z)einθ||E−1

)
n
∈ l2(Z).

Take T (ε, δ) = sup(T1(ε, δ), 2π
√

2). As T1(ε, δ) ≤ C
ε1+δ , for small ε, we also have T (ε, δ) ≤ C

ε1+δ .



182 B. ALLIBERT

For any u of E0, we have

| 〈v, u〉E−1,E0
| =

∣∣∣∣∣∑
n

e−ε|n|
〈
V n(z)einθ, un

〉
E−1,E0

∣∣∣∣∣ .
So

| 〈v, u〉E−1,E0
| ≤

∑
n

e−ε|n|||V n(z)einθ||E−1 ||u
n||E0 . (2.2)

Now for any integer n and any u in En0 , we have

||u||2E0
= ||u1||2E0

+ ||u2||2E0
.

So, through Proposition 2.2 and Lemma 2.3,

||u||2E0
≤ Cε,δ e

2ε|n|

∫
S1

∫ T1(ε,δ)

−T1(ε.δ)

|Ku(θ, t)|2 dt dθ + C

∫
S1

∫ T (ε,δ)

0

∣∣Ku2(θ, t)
∣∣2 dt dθ.

So

||u||2E0
≤

∫
S1
C′ε,δ e

2ε|n|

∫ T (ε,δ)

−T (ε,δ)

|Ku(t)|2 dt dθ + C

∫
S1

∫ T (ε,δ)

0

|Ku(θ, t)|2 dt dθ

+ C

∫
S1

∫ T (ε,δ)

0

∣∣Ku1(θ, t)
∣∣2 dt dθ.

As the problem is well posed,

||u||2E0
≤

∫
S1
C′ε,δ e

2ε|n|

∫ T (ε,δ)

−T (ε,δ)

|Ku(t)|2 dt dθ + C′ ||u1||2E0
.

So by Proposition 2.2,

||u||2E0
≤

∫
S1
C′ε,δ e

2ε|n|

∫ T (ε,δ)

−T (ε,δ)

|Ku(t)|2 dt dθ + C′Cε,δ e
2ε|n|

∫
S1

∫ T1(ε,δ)

−T1(ε,δ)

|Ku(θ, t)|2 dt dθ.

Thus

||u||2E0
≤

∫
S1
C′ε,δ e

2ε|n|

∫ T (ε,δ)

−T (ε,δ)

|Ku(t)|2 dt dθ.

If we put this into (2.2), we get

| 〈v, un〉E−1,E0
| ≤ Cε,δ

∑
n

||V n(z)einθ||E−1

√∫
S1

∫ 2T (ε,δ)

0

|Kun(θ, t)|2 dt dθ

≤ Cε,δ

√∑
n

||V n(z)einθ||2E−1

√√√√∑
n

∫
S1

∫ 2T (ε,δ)

0

|Kun(θ, t)|2 dt dθ

≤ Cε,δCv||Ku||L2(Γ×(0,2T (ε,δ))).

So by Lemma 2.4, v belongs to FT . This proves Theorem 1.1. �
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2.1. Proof of Proposition 2.2 (low frequencies)

As the gap between frequencies goes to zero in the low part of the spectrum, Ingham techniques cannot be
used in the proof of this proposition. Instead, we will use a biorthogonal sequence method. The idea is to
build a sequence of compactly supported functions hk,n(t) such that for any j 6= k, hk,n(t) is orthogonal to

the eigenfunction et
√
n2+j2 , and whose scalar product with et

√
n2+k2

, on the contrary, is not too small. The

sequence of functions hk,n(t) is said to be biorthogonal to the sequence et
√
n2+k2

. The observation constants
will appear to be related to the L2 norms of the functions hk,n(t). We will be able to decrease these norms if
we allow the support of the functions to grow.

Let us state precisely the lemma we will prove about the biorthogonal sequence

Lemma 2.5. For any odd integer q and any positive real number ε, there is a time T1(q, ε) smaller than Cqε
q+1
1−q

such that for any couple (n, k0) in N∗2, we can find an L2 function hk0,n
ε,q for which the following properties hold

(i) hk0,n
ε,q is supported by [−T1(q, ε), T1(q, ε)].

(ii) ||hk0,n
ε,q ||

2
L2 ≤ C e2εn.

(iii) If k 6= k0,

∫
hk0,n
ε,q (t)e±it

√
n2+k2

dt = 0.

(iv) If (n, k0) ∈ I = {(k, n) ∈ N∗2 | k ≤ n},
∣∣∣∣∫ hk0,n

ε,q (t)e±it
√
n2+k2

0 dt

∣∣∣∣ ≥ c
nNq
·

The constants depend only on ε and q.
Moreover, hk0,n

ε,q can be chosen as even or odd. They will be denoted he
k0,n
ε,q and ho

k0,n
ε,q .

The reader may keep in mind that q is a technical parameter, designed to get better polynomial estimates
for the time T . Let us first show how Proposition 2.2 can be proved out of this lemma.

Let u be an element of En0 , and put u =
∑
j

(
α1
n,je

1
n,j + α2

n,je
2
n,j

)
.

For any (n, k0) in I, any integer M and any θ in S1,

∫
he
k0,n
ε,q (t)K

 M∑
j=1

(
α1
n,je

1
n,j + α2

n,je
2
n,j

) (t, θ)dt =

∫
he
k0,n
ε,q (t)

M∑
j=1

[
α1
n,jKe

1
n,j(t, θ) + α2

n,jKe
2
n,j(t, θ)

]
dt

=
M∑
j=1

[
α1
n,j

∫
he
k0,n
ε,q (t)Ke1

n,j(t, θ) dt+ α2
n,j

∫
he
k0,n
ε,q (t)Ke2

n,j(t, θ) dt

]

=
1
√

2π
einθ

M∑
j=1

[
α1
n,j

j√
1 + j2 + n2

∫
he
k0,n
ε,q (t)

(
eit
√
j2+n2

+ e−it
√
j2+n2

)
dt

+ α2
n,j

j

i
√
n2 + j2

∫
he
k0,n
ε,q (t)

(
eit
√
j2+n2

− e−it
√
j2+n2

)
dt

]
.

Now, as ĥe
k0,n

ε,q is even and ĥo
k0,n

ε,q is odd,

∫
he
k0,n
ε,q (t)K

 M∑
j=1

(
α1
n,je

1
n,j + α2

n,je
2
n,j

) (t, θ)dt =

√
2

π
einθ

M∑
j=1

α1
n,j

j√
1 + j2 + n2

∫
he
k0,n
ε,q (t)eit

√
j2+n2

dt.
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So by (iii), if M ≥ k0,

∫
he
k0,n
ε,q (t)K

 M∑
j=1

(
α1
n,je

1
n,j + α2

n,je
2
n,j

) (t, θ) dt =

√
2

π
einθα1

n,k0

k0

1 + k2
0 + n2

∫
he
k0,n
ε,q (t)eit

√
k2

0+n2
dt.

So as (n, k0) ∈ I, by (iv),∣∣∣∣∣∣
∫
he
k0,n
ε,q (t)K

 M∑
j=1

(
α1
n,je

1
n,j + α2

n,je
2
n,j

) (t, θ) dt

∣∣∣∣∣∣ ≥ |α1
n,k0
|
c

nNq
·

Therefore, if M goes to the infinity,∣∣∣∣∫ he
k0,n
ε,q (t)Ku(t, θ) dt

∣∣∣∣ ≥ |α1
n,k0
|
c

nNq
· (2.3)

Similarly ∣∣∣∣∫ ho
k0,n
ε,q (t)Ku(t, θ) dt

∣∣∣∣ ≥ |α2
n,k0
| ·

c

nNq
·

Now
||u1||2E0

=
∑
k≤n

|α1
n,k|

2 + |α2
n,k|

2.

So by (2.3), for any θ ∈ S1,

||u1||2E0
≤ C

∑
k≤n

n2Nq

∣∣∣∣∫ he
k0,n
ε,q (t)Ku(t, θ) dt

∣∣∣∣2 + same with ho.

So by (i),

||u1||2E0
≤ C

∑
k≤n

n2Nq

∫
|hk0,n
ε,q (t)|2 dt

∫ T1(q,ε)

−T1(q,ε)

|Ku(t, θ)|2 dt.

So by (iii),

||u1||2E0
≤ C

∑
k≤n

n2Nq e2εn

∫ T1(q,ε)

−T1(q,ε)

|Ku(t, θ)|2 dt.

Thus

||u1||2E0
≤ C n2N ′q e2εn

∫
S1

∫ T1(q,ε)

−T1(q,ε)

|Ku(t, θ)|2 dt dθ,

with T1(q, ε) ≤ Cqε
q+1
1−q = Cδ

ε1+δ and δ → 0+ when q → +∞.
As we can shift slightly ε to eliminate the polynomial in n, we have proved Proposition 2.2. �
We still have to prove Lemma 2.5. We will do this in three steps. At first, we build a sequence of functions

fk,n for which (i), (iii) and (iv) hold. This construction is explicit, and it is equivalent with the usual way of
building biorthogonal sequences, by taking infinite products. The problem with these functions is that their L2

norm behaves like enπ, which is much too big for (ii). Though, we will see that, on the Fourier side, most of
this norm is concentrated in [−n, n].

Then, by the stationary phase formula, we will build a sequence of functions gn that are exponentially small
on [−n, n] (in frequency), and reasonably bounded outside.

At last, we will put h = f ∗ g and prove how the properties of each functions compensate in such a way that
h satisfies (i) to (iv).
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2.1.1. Definition of f and g

Let us define the sequence of functions fk,n.
For any (n, k) in Z∗ × N∗ we put

fk,n(t) = F−1
(sinπ

√
τ2 − n2

√
τ2 − n2

1

τ2 − (n2 + k2)

)
·

(F−1 is the reciprocal of the Fourier transform.)
The following properties hold for fk,n:

(f-i) f̂k,n ∈ O(C), f̂k,n ∈ L2(R) and ∀τ ∈ C , |f̂k,n(τ)| ≤ Cn,k eπ|=m τ |. So, by Paley-Wiener, fk,n

belongs to L2(−π, π).

(f-iii) ∀k ∈ N∗\{k0} , f̂k0,n(±
√
n2 + k2) = 0.

(f-iv) ∃N ∈ N, ∀(n, k) ∈ I , f̂k,n(±
√
n2 + k2) ≥ c

nN
·

However, ||fk,n||L2 ≥ C en, therefore (ii) doesn’t hold. Instead, we have the following estimate for any (n, k0)
in Z∗ × N∗ and any τ in [−n, n]

|f̂k0,n(τ)| ≤ C enπ
√

1−| τn |
2
. (2.4)

For any odd integer q, let hq(x) be the solution of y′ = 1 + yq−1 such that y(0) = 0. It is defined over (−xq, xq)
for a positive xq. It is odd, strictly increasing and analytic. Moreover, hq(x) = x+αqx

q + o(xq) when x is close
to 0, with a positive αq and hq(x)→ +∞ when x→ xq.

Its reciprocal function will be denoted Hq. It is defined over R, odd, bounded by xq and satisfies Hq(x) =
x− αqxq + o(xq) when x is close to 0.

Pick δ > 1, close to 1, that will be fixed later. We define the functions g+ as follows for any odd integer q,
any integer n and any real time T

g+
n
T,q(t) = 1(−T,T )e

in T
δxq

hq(
xq
T t).

So

ĝ+
n
T,q(τ) =

∫ T

−T
e
in T
δxq

hq(
xq
T t)−iτt dt.

Put Ψq(s) = T
xq
Hq

(
δxq
T
s
)

, then

ĝ+
n
T,q(τ) =

∫ +∞

−∞
eins−iτΨq(s) Ψ′q(s) ds.

If we write θq(s) = 1
xq
Hq(δxqs), then

ĝ+
n
T,q(τ) =

∫ +∞

−∞
θ′q

( s
T

)
e
inT

(
s
T −

τ
nθq(

s
T )

)
ds = T

∫ +∞

−∞
θ′q(v)e

inT

(
v− τnθq(v)

)
dv.

We will show later on the following lemma about the functions g+
n
T,q.
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Lemma 2.6. For big enough T , there are three positive real constants C1
q , C

2
q,T , c

3
q,T,δ and an integer n(q) such

that
• for any integer n and any real number τ smaller than n

δ
,∣∣∣ĝ+

n
T,q(τ)

∣∣∣ ≤ C2
q,T e−Tn C1

q min{( 1
δ−

τ
n )

q
q−1 ,1}.

• For any integer n greater than n(q) and any integer k0 smaller than n, there is a time Tn,k0 in [T, T + 1] such
that ∣∣∣∣ĝ+

n
Tn,k0

,q

(√
n2 + k2

0

)∣∣∣∣ ≥ c3q,T,δ√
n
·

Let us see how this lemma allows us build a sequence of functions h that satisfy Lemma 2.5.

2.1.2. Definition and properties of h

First, let us notice that we can get a lemma that is symmetrical to Lemma 2.6 for functions g−
n
T,q(t) =

1(−T,T )e
−in T

δxq
hq(

xq
T t). (t is replaced by −t).

As g−
n
T,q = g+

n
T,q, Tn,k0,+ = Tn,k0,−.

So if we put

gp
n
T,q(t) = 1(−T,T ) cos

(
n
T

δxq
hq

(xq
T
t
))

= <e (g+
n
T,q) ==

1

2
(g+

n
T,q(t) + g−

n
T,q(t)),

we get, for | τn | ≤
1
δ ∣∣∣ĝpnT,q(τ)

∣∣∣ ≤ Cq,T e−Tn Cq(
1
δ−|

τ
n |)

q
q−1
· (2.5)

For n ≥ n(ε) and k0 ≤ n , as C2
q,T e−nTuC

1
q ≤

c3q,T,δ
2
√
n

if n is big enough,∣∣∣ĝ±nTn,k0
,q(τ)

∣∣∣ ≤ 1

2

∣∣∣ĝ∓nTn,k0
,q(τ)

∣∣∣ for τ = ∓
√
n2 + k2

0.

As we can increase the constant to deal with the finite number of (n, k) in I whose n is not big enough, we get

for any (n, k0) in I and τ = ±
√
n2 + k2

0, ∣∣∣ĝpTn,k0
,q(τ)

∣∣∣ ≥ cq,T,δ√
n
· (2.6)

So we get for gp the following lemma, that corresponds to Lemma 2.6

Lemma 2.7. For big enough T , there are three positive real constants C1
q , C

2
q,T , c

3
q,T,δ and an integer n(q) such

that
• for any integer n and any real number τ in [−n

δ
, n
δ

],∣∣∣ĝpnT,q(τ)
∣∣∣ ≤ C2

q,T e−Tn C1
q ( 1
δ−|

τ
n |)

q
q−1

.

• For any integer n greater than n(q) and any integer k0 smaller than n, there is a time Tn,k0 in [T, T + 1] such
that ∣∣∣∣ĝpnTn,k0

,q

(
±
√
n2 + k2

0

)∣∣∣∣ ≥ c3q,T,δ√
n
.
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We could get similar results for gi
n
T,q(t) = 1(−T,T ) sin

(
n T
δxq

hq(
xq
T t)
)

= =m (g+
n
T,q). ge is even whereas go is

odd.
Now let us define the functions h by a convolution product, as was announced.

Let ε be a positive real number. Choose δε such that π
√

1− ( 1
δε

)2 = ε
2 and T ε such that

sup
β∈[0, 1

δε
]

(
π
√

1− β2 − C1
q T

ε

(
1

δε
− β

) q
q−1

)
≤ ε. (2.7)

As the derivative of the function to maximize is −πβ√
1−β2

+ q
q−1T

εC1
q ( 1
δε
− β)

1
q−1 , it is enough to choose T ε such

that this derivative is 0 for value βε such that π
√

1− β2
ε = ε.

We have δε = 1 + ε2

8π2 + o(ε2), βε = 1− ε2

2π2 + o(ε2). Thus 1
δε
− βε ∼ cqε2, hence

T ε ∼ cqε
q+1
1−q .

Now, let us define a sequence of times T εn,k0
.

For k0 ≤ n, we take the values given by Lemma 2.7 with T = T ε.
For k0 > n, we put T εn,k0

= T ε.
Then

T εn,k0
∈ [T ε, T ε + 1],

so
c1qε

q+1
1−q ≤ T εn,k0

≤ c2qε
q+1
1−q .

Let us define the sequence of functions h as follows

ĥe
k0,n

ε,q (τ) = f̂k0,n · ĝe
n
T εn,k0

,q(τ),

ĥo
k0,n

ε,q (τ) = f̂k0,n · ĝo
n
T ε
n,k0

,q(τ).

The index he or ho means that h is even or odd (This index will not be written for results valid in both cases).
Now let us check each of the properties of Lemma 2.5 for the functions h.

• (i) This point is easy because hk0,n
ε,q is the convolution product of fk0,n which is supported by [−π, π] and

gnT εn,k0
,q, which is supported by [−T εn,k0

, T εn,k0
].

So if we put T1(q, ε) = π + T εn,k0
, hk0,n

ε,q is supported by [−T1(q, ε), T1(q, ε)] with T1(q, ε) ≤ Cqε
q+1
1−q .

• (ii) This is where the small values of g compensate the big size of f . As over R \ [−n, n] the L2 norm

of f̂ is bounded by a polynomial and |ĝ|L∞ is bounded by 2T1(q, ε), the problem is concentrated in [−n, n].

We must estimate

∫ n

−n

∣∣∣ĥk0,n
ε,q (τ)

∣∣∣2 dτ .

Now over τ
n
∈ [−1, 1], by (2.4),

|f̂k0,n(τ)|2 ≤ C e2πn
√

1−| τn |
2
.

So if | τ
n
| ≥ 1

δε
then

|ĥk0,n
ε,q (τ)|2 ≤ C eεn.
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Now by Lemma 2.7, for | τ
n
| ≤ 1

δε
,

|ĝnT εn,k0
,q|

2 ≤ C e−2T εn,k0
nC1

q ( 1
δε
−| τn |)

q
q−1

.

So from (2.7),

|ĥk0,n
ε,q (τ)|2 ≤ C e2εn.

Hence

||ĥk0,n
ε,q ||

2
L2 ≤ Ce2εn.

• (iii) This point is a direct consequence of property (f-iii). Indeed if k 6= k0, f̂k0,n(±
√
n2 + k2) = 0, so

ĥk0,n
ε,q (±

√
n2 + k2) = 0. Which is exactly (iii) on the Fourier side.

• (iv) This is true because (f-iv) is not worsened too much by the product with g.
Indeed for (n, k0) ∈ I, by (f-iv) and (2.6),

∣∣∣∣ĥk0,n
ε,q (±

√
n2 + k2

0)

∣∣∣∣ ≥ C

nN
cq,Tε,δε√

n
≥
Cq,ε

nN
′ ·

Which is again the Fourier transcription of (iv).
In order to end our proof, we only have to prove Lemma 2.6 left.

2.1.3. Proof of Lemma 2.6

Recall that

ĝ+
n
T (τ) = T

∫ +∞

−∞
θ′q(v)einT (v− τn θq(v)) dv.

Put α = nT and β = τ
n

.
We will consider

φ(α, β) =

∫
θ′q(v)eiα

[
v−βθq(v)

]
dv,

with α going to +∞.
Depending upon the value of β as compared with 1

δ
, the phase in the integral will have stationary points or

not. This will allow us to use classical asymptotic estimates in both cases.

Case β ≤ 1
δ

In that case, the phase is not stationary. There will be an exponential decrease with respect to α. Let us prove
it by shifting slightly in the imaginary direction.
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ν−βθ (ν)δ

ν

Figure 1. Non stationnary phase.

For any real number v and any β smaller than 1
δ
,

=m
(
v + iε− βθq(v + iε)

)
= ε− β =m θq(v + iε)

= ε− β =m
(
θq(v + iε)− θq(v)

)
= ε− β =m

∫ v+iε

v

θ′q(z) dz

= ε− β =m

∫ v+iε

v

δdz

1 + δq−1xq−1
q zq−1

= ε− βεδ <e

∫ 1

0

du

1 + δq−1xq−1
q (v + iεu)q−1

·

Therefore, if β ≤ 0,

=m
(
v + iε− βθq(v + iε)

)
≥ ε if β ≤ 0.

If β > 0, then

=m
(
v + iε− βθq(v + iε)

)
≥ ε− βεδ

∣∣∣∣∫ 1

0

du

1 + δq−1xq−1
q (v + iεu)q−1

∣∣∣∣ ·
Now for any real number v, ∣∣∣∣∫ 1

0

du

1 + δq−1xq−1
q (v + iεu)q−1

∣∣∣∣︸ ︷︷ ︸
I

≤
1

1− cqεq−1
,

because

either v � ε, then I ≤ c
1+vq−1 ≤ 1,

either v ≤Mqε and in that case |v + iεu|q−1 ≤ Cqεq−1 ⇒
⇒ |1 + δq−1xq−1

q (v + iεu)q−1| ≥ 1− cqεq−1 ⇒ I ≤ 1
1−cqεq−1 .
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Thus

=m
(
v + iε− βθq(v + iε)

)
≥ ε−

βδε

1− cqεq−1

≥ ε(1− δβ)− c′qβε
q

≥ ε

(
1

δ
− β

)
− c′qβε

q.

Now

min
ε
ε

(
1

δ
− β

)
− cqβε

q = c′q

(
1

δ
− β

) q
q−1

β
1

1−q ≥ c′′q

(
1

δ
− β

) q
q−1

.

We can pick two very small real numbers ε and cq such that for any real number v, =m
(
v + iε− βθq(v + iε)

)
≥ cteq

(
1
δ
− β

) q
q−1 if β ∈]0, 1

δ
],

=m
(
v + iε− βθq(v + iε)

)
≥ cteq if β ≤ 0.

So if we shift the integration contour for φ can be shifted from R to R+ iε, we get

φ(α, β) =

∫
θ′q(v + iε)eiα

[
v+iε−βθq(v+iε)

]
dv.

Finally, as θ′q(v + iε) = δ
1+(δxq(v+iε))q−1 , we have |θ′q(v + iε)| ≤ Cq

1+vq−1 .

Hence, for any real number α and any β ≤ 1
δ ,

|φ(α, β)| ≤

∫
Cq

1 + vq−1
e−α cq min{( 1

δ−β)
q
q−1 ,1} dv ≤ Cq e

−α cq min{( 1
δ−β)

q
q−1 ,1}.

So if we go back to the original notation, for τ
n ≤

1
δ ,∣∣∣ĝ+

n
T,q(τ)

∣∣∣ ≤ Cq T e−nTcq min{( 1
δ−

τ
n )

q
q−1 ,1}. (2.8)

Which is the first part of Lemma 2.6.

ν−βθ (ν)δ

ν (β,δ)
0

p
0
(β,δ)

ν

Figure 2. Stationnary phase.
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Case β > 1.
In that case, the phase is stationary for two opposite values. We can use the stationary phase formula (see for
instance [7] p. 431), and get

φ(α, β) =

(
1√
Hβ,δ

cosαp0(β, δ)

)θ′q(v0(β, δ))
√
α

+
N∑
j=1

aj(β, δ)

αj
√
α

+ rβ,δ(α),

where rβ,δ(α) ≤ Cβ
αN+1 and α ≥ Aβ,δ. Hβ,δ denotes the Hessian at the critical points.

Here, C and A are continuous with respect to β and δ, and aj(β, δ) depends only on the first 2j+1 derivatives
of v 7→ θq(v) at v = v0(β, δ) and on Hβ,δ.

Let us compute p0(β, δ).

∂

∂v

(
v − βθq(v)

)
= 0 ⇔ 1−

βδ

1 + δq−1xq−1
q vq−1

= 0

⇒ 1 + δq−1xq−1
q vq−1

0 (β, δ) = βδ

⇒ v0(β, δ) =
1

δxq
(δβ − 1)

1
q−1 .

If β takes the values
√
n2+k2

n
with (n, k) ∈ I, which implies that

√
2 ≥ β ≥ 1, we get

C ≥ v0(β, δ), |p0(β, δ)|, |Hβ,δ| ≥ cδ,

so

1 ≥ θ′q(v0(β, δ)) ≥ cq.

Moreover aj(β, δ) ≤ Cj,δ.
Let T be a positive time. As |p0(β, δ)| ≥ cδ, for any (n, k0) in I, we can pick a time Tn,k0 in [T, T + 1] such

that cos
(
nTn,k0p0(

√
n2+k2

0

n
, δ)
)
≥ c′δ.

So if T is greater than Tu, for any integer n ≥ n(q) if α = Tn and β =

√
n2+k2

0

n
,∣∣∣∣∣∣θ

′
q(v0(β, δ))
√
α

+
N∑
j=1

aj(β, δ)

αj
√
α

∣∣∣∣∣∣ ≥ |θ
′
q(v0(β, δ))|

2
√
α

,

|rβ,δ(α)| ≤ c′δ
|Hβ,δ| θ′q(v0(β, δ))

4
√
α

·

So for any integer n ≥ n(q) any time T > Tu, and any integer k0 ≤ n, we have found a time Tn,k0 in [T, T + 1]
such that ∣∣∣∣∣φ

(
nTn,k0 ,

√
n2 + k2

0

n

)∣∣∣∣∣ ≥
c′δ|H| θ

′
q

(
v0

(√
n2+k2

0

n , δ

))
4
√
n
√
Tn,k0

≥
c
√
n
·

Which means that ∣∣∣∣ĝ+
n
Tn,k0

,q

(√
n2 + k2

0

)∣∣∣∣ ≥ CT,q,δ√
n
·

This is the second part of Lemma 2.6. �
This completes the proof of Theorem 1.1.
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3. Proof of Theorem 1.3

In order to prove this theorem, we will use two lemmas. The first one will deal with high frequencies, by
proving that the lack of analytic wave front in the required direction implies that the amplitudes corresponding
to these frequencies decrease exponentially. The second one will deal with low frequencies, and give an estimate
of each of their amplitude. Here are those lemmas

Lemma 3.1. (high frequencies). If an initial condition v = (
∑
vin,ke

i(kz+nθ))i=0,1 of E0, is such that Pv has
no analytic wave front in the direction of the captive geodesics, then there are two positive real numbers η and
ε such that

(vn,ke
ε|n|)n,k ∈ l

2
(
{(n, k) ∈ Z2 | |k| ≤ η|n|}

)
·

Lemma 3.2. (low frequencies). There is an integer N such that for any positive η, there are a positive constant
C(η) and a positive time T (η) ensuring that for any initial condition u = (

∑
uin,ke

i(kz+nθ))i=0,1 in E0 and any

integers n and k such that |n| ≤ η|k|,

|uin,k| ≤ C(η)(1 + |n|+ |k|)N |Ku|L2(Γ×(0,T (η))).

Let us show how we can prove Theorem 1.3 out of these two lemmas. Let v be an initial data in E−1 that
satisfies the hypotheses of the theorem, and u be any element of E0.

| 〈v, u〉 | =

∣∣∣∣∣∣
∑
n,k

(v1
n,ku

0
n,k − v

0
n,ku

1
n,k)

∣∣∣∣∣∣ ≤
∑
n,k

|v1
n,ku

0
n,k|+

∑
n,k

|v0
n,ku

1
n,k|.

As vin,k and uin,k satisfy the same estimates whether i = 0 or i = 1, we shall write | 〈v, u〉 | ≤
∑
n,k |vn,kun,k| in

order to simplify the notation. Pick the values of η and ε given by Lemma 3.1. Note that they depend only on
v.

| 〈v, u〉 | ≤
∑
|k|≤η|n|

∣∣∣vn,keε|n|un,ke−ε|n|∣∣∣+
∑
|k|>η|n|

∣∣∣∣vn,k(1 + |n|+ |k|)N+2 un,k

(1 + |n|+ |k|)N+2

∣∣∣∣ ·
So

| 〈v, u〉 | ≤

 ∑
|k|≤η|n|

|vn,ke
ε|n||2

 1
2

︸ ︷︷ ︸
=C1(v)<+∞ by Lemma 3.1

 ∑
|k|≤η|n|

|un,k|
2e−2ε|n|

 1
2

+

 ∑
|k|>η|n|

|v2
n,k(1 + |n|+ |k|)2(N+2)|

 1
2

︸ ︷︷ ︸
=C2(v)<+∞ because v∈HN+2×HN+2

 ∑
|k|>η|n|

|un,k|2

(1 + |n|+ |k|)2(N+2)

 1
2

·
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So

| 〈v, u〉 | ≤ C1(v)

(∑
n

|un,1|2E0
e−2ε|n|

) 1
2

+ C2(v) |Ku|L2(Γ×(0,T (η))

∑
n,k

1

(1 + |n|+ |k|)4

 1
2

︸ ︷︷ ︸
by Lemma 3.2

≤ C1(v)

(∑
n

|Ku|2L2(Γ×(0,T (ε)))

) 1
2

︸ ︷︷ ︸
by proposition 2.2

+C2(v)|Ku|L2

≤ C(v)|Ku|L2(Γ×(0,T (ε))).

So by Lemma 2.4, v belongs to FT (ε). �

3.1. Proof of Lemma 3.1

As some readers may not been familiar with the notion of analytic wave front, we shall give a simple definition
for this notion. Let us define a kind of FBI transform

Definition 3.3. For any distribution f in S′(R2), we denote

Bf(z) =

∫
eiz.ξ f̂(ξ) e−|ξ| dξ.

Notice that any distribution is transformed by B into a function that is holomorphic over {(=m z1)2 +
(=m z2)2} < 1}.

This transform has been introduced by Lebeau in [5]. Although it is not strictly local, it is very useful when
one wants to study different types of wavefront sets of f . For instance, the point (x, ξ) does not belong to

WF (f) if and only if Bf and all its derivatives have a limit at x− i ξ|ξ| .

We shall say, as in [5] that a function has no analytic wave front at the point (x, ξ) if and only if Bf can be

continued as an holomorphic function over a complex neighborhood of x− i ξ|ξ| . This definition of the analytic

wave front set, due to Lebeau, is not the only one. It is not the first one either. However, it is the least technical
one and in many cases the more practical to compute.

In the periodic case, Bf can be expressed in terms of Fourier coefficients

Let f(z, θ) =
∑
n,k

an,ke
inθ+ikz , then

f̂(ξ1, ξ2) =
∑
n,k

an,kδξ1=k ⊗ δξ2=n.

So

Bf(z, θ) =

∫
ei(zξ1+θξ2) e−|ξ|f̂(ξ1, ξ2) dξ

=
∑
n,k

∫
ei(zξ1+θξ2)−

√
ξ21+ξ2

2 an,k δξ1=k ⊗ δξ2=n dξ1 dξ2

=
∑
n,k

einθ+ikz−
√
n2+k2

an,k.
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Let v satisfy the hypotheses of Lemma 3.1. The lack of analytic wave front of Pv means that BPv, that is
holomorphic over the set (=m θ)2 + (=m z)2 < 1 has an holomorphic extension in a complex neighborhood of
the set =m z = 0 , |=m θ| = 1. Therefore there is a positive real number ε such that BPv is analytic over
=m z = 0 , =m θ = ±(1 + 2ε). Therefore, the periodic functions that maps (z, θ) ∈ R2 to BPv(z, θ± i(1 + 2ε))
are analytic. They belong to L2([0, 2π]2). So the sequence of their Fourier coefficients belong to l2(Z2).

Now as BPv is an holomorphic function, by shifting the integration contour in θ from [0, 2π] to ±i(1 + 2ε) +
[0, 2π], we know that these coefficient are equal to e±(1+2ε)n times these of (z, θ) ∈ R2 7→ BPv(z, θ). As these

latter coefficients are vn,ke
−
√
n2+k2

, we know that

(vn,ke
(1+2ε)|n|−

√
n2+k2

)n,k ∈ l
2(Z2).

Now for small enough η, if |k| ≤ η|n|,
√
n2 + k2 ≤ (1 + ε)|n|. Therefore,

(vn,ke
ε|n|)n,k ∈ l

2({(n, k) ∈ Z2 | |k| ≤ η|n|}).

3.2. Proof of Lemma 3.2

The proof of this lemma uses the same ingredients as the proof of Proposition 2.2. We will use the same
kind of biorthogonal sequence. Though, in that case, we will use it for the high frequencies, for which the
geometrical control condition holds. This is why the norms of the functions h are not growing exponentially.
Another difference lies in the fact that for high frequencies, we have to sum an infinite number of values of k
for each n. (k ≥ η|n|). So we have to take care of the convergence of the series, which compels us to be careful
about the constants.

We will prove that for any positive η, we can find a positive time T (η) and a sequence of functions hn,kη ,
chosen even or odd, such that

(i) for any (n, k) in Z2, hn,kη is supported by [−T (η), T (η)],

(ii) for any (n, k) in Z2, ||hn,kη ||L2 ≤ C
(1+|n|+|k|)N ,

(iii) if k 6= k0,
∫
hn,k0
η (t)e±i

√
n2+k2

= 0,

(iv) if |n| ≤ η|k|, |
∫
hn,k0
η (t)e±i

√
n2+k2

| ≥ C
(1+|n|+|k|)N ·

Let us see how this allows us to prove Lemma 3.2.
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Let u be an element of E0, and put u =
∑
m,k

(
α1
m,ke

1
m,k + α2

m,ke
2
m,k

)
.

For any (n, k0) such that |k0| ≥ η|n| and any integer M bigger than n,

∫
he
k0,n
η (t)e−inθK

 M∑
m,j=1

(
α1
m,je

1
m,j + α2

m,je
2
m,j

) (t, θ) dt dθ

=

∫
he
k0,n
η (t)e−inθ

M∑
j=1

[
α1
n,jKe

1
n,j(t, θ) + α2

n,jKe
2
n,j(t, θ)

]
dt dθ

=
M∑
j=1

[
α1
n,j

∫
he
k0,n
η (t)e−inθKe1

n,j(t, θ) dtdθ + α2
n,j

∫
he
k0,n
η (t)e−inθKe2

n,j(t, θ) dtdθ

]

=
1
√

2π

M∑
j=1

[
α1
n,j

j√
1 + j2 + n2

∫
he
k0,n
η (t)

(
eit
√
j2+n2

+ e−it
√
j2+n2

)
dt

+α2
n,j

j

i
√
n2 + j2

∫
he
k0,n
η (t)

(
eit
√
j2+n2

− e−it
√
j2+n2

)
dt

]
.

So, as ĥe
k0,n

ε,q is even and ĥo
k0,n

ε,q is odd,

∫
he
k0,n
η (t)e−inθK

 M∑
m,j=1

(
α1
m,je

1
m,j + α2

m,je
2
m,j

)(t, θ) dt dθ

=

√
2

π
einθ

M∑
j=1

α1
n,j

j√
1 + j2 + n2

∫
he
k0,n
η (t)eit

√
j2+n2

dt.

So by (iii), if M ≥ k0,

∫
he
k0,n
η (t)e−inθK

 M∑
m,j=1

(
α1
m,je

1
m,j + α2

m,je
2
m,j

)(t, θ) dt dθ

=

√
2

π
α1
n,k0

k0

1 + k2
0 + n2

∫
he
k0,n
η (t)eit

√
k2

0+n2
dt.

So by (iv), as |k0| ≥ η|n|,∣∣∣∣∣∣
∫
he
k0,n
η (t)e−inθK

 M∑
m,j=1

(
α1
m,je

1
m,j + α2

m,je
2
m,j

) (t, θ) dt dθ

∣∣∣∣∣∣ ≥ |α1
n,k0
|

c

(1 + |n|+ |k|)N
·

Therefore, if M goes to the infinity,∣∣∣∣∫ he
k0,n
η (t)e−inθKu(t, θ) dt dθ

∣∣∣∣ ≥ |α1
n,k0
|

c

(1 + |n|+ |k|)N
· (3.1)
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Similarly ∣∣∣∣∫ ho
k0,n
η (t)e−inθKu(t, θ) dt dθ

∣∣∣∣ ≥ |α2
n,k0
| ·

c

(1 + |n|+ |k|)N
· (3.2)

Now by (i), ∣∣∣∣∫ hk0,n
η (t)e−inθKu(t, θ) dt dθ

∣∣∣∣2 ≤ ∫ |hk0,n
η (t)|2 dt

∫
S1×(−T (η),T (η))

|Ku(t, θ)|2 dt dθ.

So by (ii), ∣∣∣∣∫ hk0,n
η (t)e−inθKu(t, θ) dt dθ

∣∣∣∣2 ≤ C(1 + |n|+ |k|)N
∫
S1×(−T (η)T (η))

|Ku(t, θ)|2 dt dθ.

Thus by (3.1) and (3.2),

|αin,k0
|2 ≤ C(1 + |n|+ |k|)2N |Ku(t, θ)|2L2(Γ×(−T (η),T (η))).

�

3.3. Construction of functions hn,kη

We will build the sequence hn,kη with the same ingredients as the sequence hn,kε,q . Recall that we defined
functions g by

g+
n
T,q(t) = 1(−T,T )e

in T
δxq

hq(
xq
T t),

ge
n
T,q(t) = 1(−T,T ) cos

(
n
T

δxq
hq

(xq
T
t
))

,

go
n
T,q(t) = 1(−T,T ) sin

(
n
T

δxq
hq

(xq
T
t
))

.

But this time, we will put
√

1 + η2 > 1
δ > 1. The following lemma holds

Lemma 3.4. For big enough T , there are three positive real constants C1
q , C

2
q,T , c

3
q,T,δ and an integer N such

that
• for any integer n and any real number τ in [−n

δ
, n
δ

],∣∣∣ĝpnT,q(τ)
∣∣∣ ≤ C2

q,T e−Tn C1
q ( 1
δ−|

τ
n |)

q
q−1
·

• For any integers n and k0 such that |k0| ≥ η|n|, there is a time Tn,k0 in [T, T + 1] such that∣∣∣∣ĝpnTn,k0
,q(±

√
n2 + k2

0))

∣∣∣∣ ≥ c3q,T,δ

(1 + |n|+ |k0|)N
·

We shall now fix q = 3. We take T (η) large enough to ensure C1
q (1
δ
− 1) ≥ 3π. Then, we define the times T n,kη

by taking the time given by Lemma 3.4 if |k| ≥ η|n| and putting T n,kη = T (η) otherwise. Then we define

hp
n,k
η = f̂k,n · ĝp

n
Tn,kη ,q

(τ),

hi
n,k
η = f̂k,n · ĝi

n
Tn,kη ,q

(τ).
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Let us check properties (i) to (iv)

(i) By convolution, h is supported by [−T ′(η), T ′(η)] with T ′(η) = T (η) + 1 + 3π.

(ii) Once again, the problem is concentrated in [−n, n], the rest being easily bounded by polynomials. Now over
τ
n
∈ [−1, 1], by (2.4),

|f̂k0,n(τ)|2 ≤ C e2πn
√

1−| τn |
2
≤ Ce2πn.

So by Lemma 3.4, as 1
δ > 1, for | τn | ≤ 1, ∫ n

−n
|ĥk,nη |

2 dτ ≤ C.

Hence
||ĥk0,n

η ||2L2 ≤ C(1 + |n|+ |k|)N .

(iii) is a direct consequence of the properties of f

(iv) is a direct consequence of (f-iv) and Lemma 3.4.
We only have the proof of Lemma 3.4 left.

3.4. Proof of Lemma 3.4

Once again, we have to estimate an integral with either a stationary or a non-stationary phase. The first
estimate in non stationary, and it has been already proved in the case of Lemma 2.6. The second estimate is a
stationary phase formula. Remind that we consider

φ(α, β) =

∫
θ′q(v)eiα

[
v−βθq(v)

]
dv,

with α→ +∞.

The stationary phase formula shows that

φ(α, β) = cosαp0(β, δ)

θ′q(v0(β, δ))√
Hβ,δ

√
α

+
N∑
j=1

cj
θ

(2j+1)
q (v0(β, δ))

αjHj
β,δ

√
αHβ,δ

+ rβ,δ(α)

where rβ,δ(α) ≤ Cβ,δ
(Hβ,δα)N+1 . Hβ,δ denotes the Hessian at the critical points.

The value Cβ,δ depends only on the first 2N + 1 derivatives of v 7→ θq(v) at v = v0(β, δ).
We know that

v0(β, δ) =
1

δxq
(δβ − 1)

1
q−1 .

Now if β takes the values
√
n2+k2

n with |k| ≥ η|n|, (δβ − 1) remains in a set [ε,+∞) with ε > 0, therefore, Hβ,δ

remains in an interval of the same type. Furthermore, all derivatives of θq are bounded. So for big enough α
and any value of (n, k) such that |k| ≥ η|n|,∣∣∣∣∣∣θ

′
q(v0(β, δ))
√
α

+
N∑
j=1

θ
(2j+1)
q (v0(β, δ))

αj
√
α

∣∣∣∣∣∣ ≥ |θ
′
q(v0(β, δ))|

2
√
α

,

|rβ,δ(α)| ≤ c′δ
θ′q(v0(β, δ))

4
√
α
√
Hβ,δ

·
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And for the same reason, we have |p0(β, δ)| ≥ cδ > 0, and therefore for any given T > 0, we can pick a time
Tn,k0 in [T, T + 1] such that

cos

(
nTn,k0p0

(√
n2 + k2

0

n
, δ

))
≥ c′δ.

Therefore we have

∣∣∣∣∣φ
(
nTn,k0 ,

√
n2 + k2

0

n

)∣∣∣∣∣ ≥
c′δ θ

′
q

(
v0

(√
n2+k2

0

n , δ

))
4
√
H
√
n
√
Tn,k0

≥
c

(1 + |n|+ |k|)N
·

Which means that ∣∣∣∣ĝ+
n
Tn,k0

,q

(√
n2 + k2

0

)∣∣∣∣ ≥ C

(1 + |n|+ |k|)N
·

�
The exact value of N depends on the power of β that appears in the Hessian. It could be computed, which
would lead to a control result for Sobolev functions instead of C∞ ones. Though, as the result would certainly
not be optimal in term of Sobolev power, it would be a little bit artificial.

4. Proof of Theorem 1.2

In order to prove this theorem, we will characterize the spaces Gα and FT by their images by the operator
B. Roughly speaking, these images will be spaces of functions that are holomorphic over given sets, that we
will compute. By comparing these sets will be able to compare the initial spaces.

Before we can use the operator B, we have to continue the functions we consider over R2. In order to to this,
we will periodise the system.

We are currently considering the solutions u1(z, θ, t) of∣∣∣∣∣∣
2u1 = 0 over (0, π)× S1 × R,
u1|z=0 = g(θ, t) ∈ L2 supported by t ∈ [0, T ] u1|z=π = 0,
(u1, ∂tu1)|t=T = 0.

We look for the space FT spanned by (u1, ∂tu1)|t=0.
This problem can be continued antisymetrically to values of z in [0, 2π] by putting u2(π+ z, θ, t) = −u2(π −

z, θ, t).

We get the following problem∣∣∣∣∣∣∣∣
2u2 = 0 over (0, 2π)× S1 × R,
u2|z=0 = g(θ, t) supported by [0, T ],
u2|z=2π = −g(θ, t),
(u2, ∂tu2)|t=T = 0.

To end with, we can take the 2π-periodic extension of u2 with respect to z in R, that will be denoted Pu.

Pu is the solution of

∣∣∣∣∣∣∣
2v = (g1δz=0 + g2δ

′
z=0) ∗

(∑
k∈Z

δz=2πk

)
,

(v, ∂tv)|t>T = 0,
with g1 = 0 and g2 = 2g supported by [0, T ].
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2π zπ0

Figure 3. Antisymmetric continuation.

2π π3 π4π0 z

Figure 4. Periodic continuation.

Denote FT the space spanned by (v, ∂tv)|t=0 when g1, g2 are any distributions over S1 × Rt supported by
{t ∈ [0, T ]}.

Any element of FT is a couple of functions that we can periodise as shown before. Their periodised function
belongs to FT . From now on, we will identify these functions with their image by periodisation. Then we
can denote FT ⊂ FT instead of PFT ⊂ FT . Notice that for any posive β the Fourier series developpement
of functions in Gβ is formally the same as the developpement of their periodised function, which makes the
identification even easier.

In order to bound αC(T ) from bellow, we will compute the space FT , thanks to an explicit Fourier integral
operator. Then we will find a Gβ that won’t be a subset of FT , hence not a subset of FT either.

4.1. Two lemmas

Recall that

Bf(z) =

∫
eiz.ξ f̂(ξ) e−|ξ| dξ.
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Let us denote Ea ⊂ C2 the following domain, which is independent from the real parts of the variables

Im θ
a+1a

1

Im z

Figure 5. The set Ea.

We will also denote R2 3 (z, θ) ∈ REa if (iz, iθ) ∈ Ea.
Here are the main two lemmas of the proof.

Lemma 4.1. For any real number α and any (z0, θ0) in R2, there is a function v in G0,α such that

Bv ∈ O(Eα) and

Bv has no holomorphic continuation at
(
z0, θ0 + i(α+ 1)

)
.

Lemma 4.2. For any real time T , there is a connected open domain ΩT of C2 that contains E0 over which any
function of BFT has an holomorphic continuation.
It contains all the points (π, θ1 − iε) for ε ∈ (0, 1) and

θ1 = i

√
2

2

[
1− T 2 + π2 +

√
(T 2 − 1− π2)2 + 4T 2

] 1
2

Let us see how we can conclude with those to lemmas. Let ε be a positive number smaller than 1. Put
β = =m θ1 − 1− ε.

Let v be the function of G0,β given by Lemma 4.1 for z0 = π and θ0 = 0.
It has no holomorphic continuation in a neighborhood of (π, θ1 − iε).
Now Lemma 4.2 proves that any function of BFT has an holomorphic continuation at that point.
So for instance (v, 0) does not belong to FT . Therefore Gβ 6⊂ FT .
By definition of αC(T ), this proves that

αC(T ) ≥

√
2

2

[√
T 4 + 2(1− π2)T 2 + (1 + π2)2 − T 2 + π2 + 1

] 1
2

− 1 ≈
π2

2T 2
(4.1)

�
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4.2. Proof of Lemma 4.1

Let us begin with a technical remark.
For any (z0, θ0) in R2, put φα(n, k) = nθ0 + kz0 −

√
n2 + k2 − α|n|.

Remark 4.3. For any positive α, any β smaller than 1, any positive α′ smaller than α and any (θ0, z0) in
REα′ such that |z0| ≤ β, there is a positive constant Cα−α′, β such that for any (n, k) in R2,

φα(n, k) ≤ −Cα−α′, β
√
n2 + k2.

Proof. Take for instance θ0 ≥ 0 and n ≥ 0.

φα(n, k) = nθ0 + kz0 −
√
n2 + k2 − α|n|

=
√
n2 + k2

[
n

√
n2 + k2

(θ0 − α) +
k

√
n2 + k2

z0 − 1

]
=

∣∣∣∣ nk
∣∣∣∣
[
~en,k ·

(
θ0 − α
z0

)
− 1

]
.

Now (z0, θ0) ∈ REα′ , and |z0| < 1.
If we put

C′α−α′, β = sup
{

(θ − α, z) · ~eη; (θ, z) ∈ REα′ , |z| < β , ~eη ∈ S ∩ {n > 0}
}
,

we get C′α−α′, β < 1.

Then φα(n, k) ≤ −Cα−α′, β
√
n2 + k2 , where Cα−α′, β = 1− C′α−α′, β . �

Lemma 4.4. For any positive α and j = 0, 1,

B(Gj,α) ⊂ O(Eα).

Proof. If f(z, θ) =
∑
n,k

an,k e
inθ+ikz−α|n| ∈ Gj,α,

Bf(zr + izi, θr + iθi) =
∑
n,k

an,k e
inθr+ikzr−nθi−kzi−

√
n2+k2−α|n|.

Then Remark 4.3 indicates that Bf is defined by an exponentially decreasing series which sum is an holomorphic
function, that is the only possible holomorphic continuation to Bf . �

We have shown that BGα is a subset of O(Eα)2.
To show Lemma 4.1, we still have to build a function that isn’t holomorphic at the right place. This is done

in the following lemma

Lemma 4.5. For any positive α and any (z0, θ0) in R2, there is a function v in G0,α such that

Bv has no holomorphic continuation at
(
z0, θ0 + i(α+ 1)

)
.

Proof. Let v be an element of S′(R2), defined by

v =
∑
n,k≤0

1

〈n〉

1

〈k〉
e−|n|α+in(θ−θ0)+ik(z−z0)
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where 〈k〉 = sup(1, |k|).

v ∈ G0,α.

We know by Lemma 4.4 that Bv has an unique holomorphic continuation over Eα. Let us compute it.

Bv(θr + iθi, zr + izi) =
∑
n,k≤0

1

〈n〉〈k〉
e−α|n|+i(θr−θ0)n+i(zr−z0)k−θin−zik−

√
n2+k2

.

So, as an holomorphic function over Eα,

∂3

∂θ3
Bv (θr + iθi, zr + izi) = −i

∑
n,k≤0

n3

〈n〉〈k〉
e−α|n|+i(θr−θ0)n+i(zr−z0)k−θin−zik−

√
n2+k2

.

Let us denote this this latter function f . We shall show that f has no holomorphic continuation at
(
θ0 + i(α)

+1), z0

)
.

In order to do this, we will find a sequence of points (θn, zn) in Eα that goes to
(
θ0 + i(α+ 1), z0

)
and such

that |f(θn, zn)| → ∞.

Hence f cannot have any continuous continuation at
(
θ0 + i(α+ 1), z0

)
thus Bv has no holomorphic contin-

uation there.
Let (θν0 , z

ν
0 ) be the point

(
θ0 + i(α+ 1− ν), z0

)
.

For small enough ν, (θν0 , z
ν
0 ) belongs to Eα, so f is defined at that point, and

if (θν0 , z
ν
0 ) =

∑
n,k≤0

n3

〈n〉〈k〉
e−α|n|−θ

ν
i n−z

ν
i k−
√
n2+k2

.

All terms in that sum are positive, so

if (θν0 , z
ν
0 ) ≥

∑
n≤−1

n2enα−(α+1−ν)n−|n| =
+∞∑
n=1

n2e−νn.

Thus

lim
ν→0

if(θν0 , z
ν
0 ) = +∞.

This proves the lemma. �

4.3. Proof of Lemma 4.2

Time being reversible in the wave equation, FT can also be defined that way.
Let g1, g2 be in D′(S1 × Rt) supported by {t ∈ [0, T ]} and let v be the solution of

2v = (g1δz=0 + g2δ
′
z=0) ∗

∑
k∈Z

δz=2πk︸ ︷︷ ︸
g(z,t)

with (v, ∂tv)|t=0 = 0.

Put S(g) =
(
v, ∂v

∂t

)
|t=T .

FT = Im S.
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Now we know a solution to the elementary equation 2e = δ with e|t<0 = 0

e =
1

4π2

∫
eix·ξ 1t>0

sin t|ξ|

|ξ|
dξ.

So by convolution,

S(g)(θ, z) =


∫ ∫

sin(T − s)|ξ|

|ξ|
ei(θ−θ

′)ξ1+i(z−z′)ξ2 g(z′, θ′, s) dz′ dθ′ ds dξ∫ ∫
cos(T − s)|ξ| ei(θ−θ

′)ξ1+i(z−z′)ξ2 g(z′, θ′, s) dz′ dθ′ ds dξ


Then

BS(g)(θ, z) =


∫ T

0

∫
sin(T − s)|ξ|

|ξ|
ei(θ−θ

′)ξ1+i(z−z′)ξ2−|ξ| g(z′, θ′, s) dz′ dθ′ ds dξ∫ T

0

∫
cos(T − s)|ξ| ei(θ−θ

′)ξ1+i(z−z′)ξ2−|ξ| g(z′, θ′, s) dz′ dθ′ ds dξ

 . (4.2)

As sinx = 1
2i (e

ix − e−ix), and cosx = 1
2 (eix + e−ix), with a change of variables, we can rewrite

BS(g)(θ, z) =


∫ 2T

0

∫
ei(T−s)|ξ|

2i|ξ|
ei(θ−θ

′)ξ1+i(z−z′)ξ2−|ξ| h1(z′, θ′, s) dz′ dθ′ ds dξ∫ 2T

0

∫
ei(T−s)|ξ|

2
ei(θ−θ

′)ξ1+i(z−z′)ξ2−|ξ| h2(z′, θ′, s) dz′ dθ′ ds dξ

 (4.3)

where

h1(z′, θ′, s) = h2(z′, θ′, s) = g(z′, θ′, s) if 0 ≤ s ≤ T,

and

h1(z′, θ′, s) = −h2(z′, θ′, s) = g(z′, θ′, 2T − s) if T ≤ s ≤ 2T.

BS(g) is the image of g by a Fourier Integral Operator with complex phase. As this operator is explicit, it is
easy to compute the set over which BS(g) is always holomorphic. We can do this by computing at first the
domain of holomorphy for the kernel, and then compute an envelope.

Lemma 4.6. Holomorphy of the kernel.

The function z 7→

∫
eiz·ξ+(it−1)|ξ| dξ, that will be denoted ft(z) can be holomorphicaly continued in the neigh-

borhood of any point of the domain C2 \ {z ∈ C2 | z2 = (t+ i)2} as the function

ft(z) =
2iπ(t+ i)

[(t+ i)2 − z2]
3
2

·
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Proof. For |=m z| < 1,

ft(z) =

∫ ∫
ei(z1ξ1+z2ξ2)+(it−1)

√
ξ21+ξ2

2 dξ1 dξ2

=

∫ 2π

0

∫ +∞

0

eiρ cos θz1+iρ sin θz2+(it−1)ρρ dρ dθ

=

∫ 2π

0

−dθ

(cos θz1 + sin θz2 + t+ i)2

=

∫ 2π

0

dθ

R(θ)
·

Remark. For |=m z| < 1 , R(θ) is never equal to zero because(
cos θ
sin θ

)
·

(
=m z1

=m z2

)
< 1.

Put η = eiθ.
dη = ieiθ dθ , cos θ = 1

2 (η + 1
η
) , sin θ = 1

2i (η −
1
η
)·

ft(z) =

∫
U

i dη

η[ z1η+z1/η
2 + z2η−z2/η

2i + t+ i]2

=

∫
U

4iη dη

[(z1 − iz2)η2 + 2(t+ i)η + z1 + iz2]2

=

∫
U

4iη dη

P (η)
·

Remark. For |=m z| < 1 , η ∈ U , P (η) is never equal to zero because R(θ) 6= 0.
The roots of P (η) in C are

η±0 =
−(t+ i)±

√
(t+ i)2 − z2

z1 − iz2
·

These values are well defined if z ∈ R2 \ {0}, and we can choose a determination for the square root when
|=m z| < 1 because (t+ i)2 − z2 is never zero.

Now let us restrict to the values of z ∈ (R2 \ {0}) ⊂ {|=m z| < 1}.
We shall show that |η+

0 | < 1 and |η−0 | > 1.
We know that η+

0 η
−
0 = z1+iz2

z1−iz2
which modulus is 1 because z belongs to R2.

Moreover if z0
2 = 0 and |z0

1| is small, |η+
0 (z0

1 , z
0
2)| < 1 (so |η−0 (z0

1 , z
0
2)| > 1).

For (z1, z2) in R2 \ {0}, join (z0
1 , z

0
2) to (z1, z2) by a continuous path (z1(τ), z2(τ))|τ∈[0,1] in R2 \ {0}.

As |η+
0 (z1(τ), z2(τ))| is continuous, if |η+

0 (z1, z2)| ≥ 1, there is a τ0 ∈ [0, 1] such that

|η+
0 (z1(τ0), z2(τ0))| = 1,

which is impossible because P has no root over U.
So for any (z1, z2) in R2 \ {0} , |η+

0 (z1, z2)| < 1 and |η−0 (z1, z2)| > 1.

So ft(z) is integrated over a contour that encloses only one pole.
Thus

ft(z) = 2πRes[
4iη

P (η)
; η+

0 ].
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η
0
+

η
0
-

Figure 6. Integration contour.

So for any z in R2 \ {0},

ft(z) =
8iπ

(z1 − iz2)2
Res[

η

(η − η+
0 )2(η − η−0 )2

; η+
0 ] =

2iπ(t+ i)

[(t+ i)2 − z2]
3
2

,

where we have chosen a determination for the square root that remains fixed.
This function is holomorphic over the set {|=m z| < 1} and therefore is equal to ft there.
It can be continued as an holomorphic function to the set C2 \ {z ∈ C2 | z2 = (t + i)2} (or, more precisely

over its simply connected bundle). �
We shall now take the convolution product of this kernel. At first, let us consider only one Dirac function

with respect to z (e.g. ignore the periodicity with respect to z).
Consider the function ∫ ∫

z′,θ′
fT−s(θ − θ

′, z − z′)hi(θ
′, s)δz′=0 ds dz

′ dθ′,

with hi supported by s ∈ [0, 2T ]. Let us compute at what point (θ, z) of C2 it can certainly be holomorphicaly
continued.

Put θ = θr + iθi; z = zr + izi.
According to Lemma 4.6, we must compute for any point (θ, z) if there is a (θ′, s) in R× [0, 2T ] that ensures

(T − s+ i)2 = (θ − θ′)2 + z2.
The translation invariance with respect to θr is trivial, therefore we only have to compute if for given θi , zr , zi

there is a s in [−T, T ] and a θr in R such that

(s+ i)2 = (θr + iθi)
2 + (zr + izi)

2.

Which means {
s2 − 1 = θ2

r − θ
2
i + z2

r − z
2
i ,

s = θiθr + zizr.
(4.4)

This will describe a geometric envelope inside which our function will be continued holomorphicaly as a sum of
holomorphic functions. Of course, this set contains E0, so the envelope never gets inside this.

For given (zr, zi) with |zi| < 1, let θ0
i (zi, zr) be defined by

θ0
i (zi, zr) = inf{|θi| such that (4.4) has a solution with s ∈ [−T, T ] , θr ∈ R}·

We have

θ0
i (zi, zr) ≥

√
1− |zi|2 > 0. (4.5)
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• For 1 > |zi| ≥
|zr|
T , (4.4) has a solution (θr, zr) = s(θi, zi) where s satisfies zr = szi and θi =

√
1− |zi|2.

Therefore

1 > |zi| ≥
|zr|

T
⇒ θ0

i (zi, zr) =
√

1− |zi|2. (4.6)

• For |zi| <
|zr|
T

, we can eliminate θr in (4.4), and get

θ4
i + (s2 − 1 + z2

i − z
2
r)θ2

i − (s− zrzi)
2 = 0. (4.7)

As |zi| < 1, (4.7) has an unique positive root θi(zi, zr, s), that is analytic with respect to s ∈ R, (4.5) shows
that

θ0
i (zi, zr) = min

s∈[−T,T ]
θi(zi, zr, s).

Equations ∂
∂s
θi(zi, zr, s) = 0 and (4.7) prove that s(1 − θ2

i ) = zrzi so |zrzi| ≤ |s||zi|2 according to (4.5), so

|s| > T for |zi| 6= 0 because |zi| <
|zr|
T

.

If zi = 0, θ2
i = 1 is not a solution to (4.7) (because |zr| > 0) and θi(0, zr, 0) =

√
1 + z2

r > 1 = lim
s→+∞

θi(0, zr, s),

so s = 0 is a maximum.

i r i 
θ (z  , z  ,s)

i 

sT s0

θ
i 

i 

i 

2

r 

0

1-z

(z  ,z  )

Figure 7

Thus

|zi| < min(1,
|zr|

T
)⇒ θ0

i (zi, zr) =

√
2

2

[
1− T 2 + z2

r − z
2
i +

√
(T 2 − 1 + z2

i − z
2
r)2 + 4(T − |zrzi|)2

] 1
2

. (4.8)

If we put ΩT (zr) = {(zi, θi) | |zi| < 1 , |θi| < θ0
i (zi, zr)}, the function∫ ∫

fT−s(θ − θ
′, z − z′)hi(θ

′, s) ∗

(∑
k∈Z

δz′=2πk

)
ds dz′ dθ′

is holomorphic over ΩT defined by

ΩT = {(zr + izi, θr + iθi) ∈ C2 | (zi, θi) ∈
⋂
k∈Z

ΩT (zr + 2πk)}·
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z r| |
T Im θ

Im z

Ω

Figure 8. The set ΩT .

So both components of BS(g)(θ, z), as defined by (4.2), are also holomorphic over ΩT .
Now for any real number ε in (0, 1), ΩT contains a neighborhood of the set of

z = π , θ ∈ i[0, θ0
i (0, π)− ε],

which, together with (4.8), proves Lemma 4.2. �
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1988).
[7] F. Treves, Introduction to pseudodifferential and Fourier integral operators, New York and London Plenum Press Vol. 2, 25

cm (The university series in mathematics, 1980).
[8] A. Zygmund, Trigonometric Series, Cambridge Univ. Press (1968).


