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EXPONENTIAL STABILIZATION OF NONLINEAR DRIFTLESS SYSTEMS

WITH ROBUSTNESS TO UNMODELED DYNAMICS ∗

Pascal Morin
1

and Claude Samson
1

Abstract. Exponential stabilization of nonlinear driftless affine control systems is addressed with the
concern of achieving robustness with respect to imperfect knowledge of the system’s control vector
fields. In order to satisfy this robustness requirement, and inspired by Bennani and Rouchon [1]
where the same issue was first addressed, we consider a control strategy which consists in applying
periodically updated open-loop controls that are continuous with respect to state initial conditions.
These controllers are more precisely described as continuous time-periodic feedbacks associated with
a specific dynamic extension of the original system. Sufficient conditions which, if they are satisfied
by the control law, ensure that the control is a robust exponential stabilizer for the extended system
are given. Explicit and simple control expressions which satisfy these conditions in the case of n-
dimensional chained systems are proposed. A constructive algorithm for the design of such control
laws, which applies to any (sufficiently regular) driftless control system, is described.

Résumé. Pour les systèmes de commande sans dérive, le problème de la stabilisation exponentielle
est considéré, avec pour principal objectif l’obtention de commandes robustes par rapport aux erreurs
de modélisation sur les champs de commande. Motivés par Bennani et Rouchon [1], où ce problème de
robustesse a déjà été étudié, nous considérons des lois de commande en boucle ouverte, réinitialisées
périodiquement, et dépendant continument de l’état initial. Ces lois de commande peuvent aussi être
vues comme des retours d’état instationnaires continus définis à partir d’une extension dynamique
particulière du système de départ. Nous énonçons des conditions suffisantes portant sur ces retours
d’état pour qu’ils stabilisent de façon robuste le système étendu. Nous proposons ensuite des lois
de commande explicites et simples qui satisfont ces conditions pour un système châıné de dimension
quelconque. Enfin, nous décrivons un algorithme de synthèse de lois de commande robustes, applicable
à tout système régulier localement commandable.
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1. Introduction

We consider an analytic driftless system on Rn

(S0) : ẋ =
m∑
i=1

fi(x)ui , (1)

locally controllable around the origin, i.e.

Span{f(0) : f ∈ Lie(f1, . . . , fm)} = Rn , (2)

and address the problem of constructing explicit feedback laws which (locally) exponentially stabilize, in some
sense specified later, the origin x = 0 of the controlled system. A further requirement is that these feedbacks
should also be exponential stabilizers for any “perturbed” system in the form

(Sε) : ẋ =
m∑
i=1

(fi(x) + hi(ε, x))ui , (3)

with hi analytic in R× Rn and hi(0, x) = 0, when |ε| is small enough. In other words, given a nominal control
system (S0), we would like to find nominal feedback controls, derived on the basis of this nominal system,
that preserve the property of exponential stability when they are applied to “neighboring” systems (Sε). It is
of course assumed that the tangent linear approximation of (S0) at (x = 0, u = 0) is not stabilizable, since
otherwise the problem is simply solved by using an adequate linear feedback u(x) = Kx. This assumption
implies in particular that the rank of the matrix formed by the column-vectors fi(0), 1 ≤ i ≤ m, is smaller than
n.

In this context, the term
∑m
i=1 hi(ε, x)ui represents a class of unmodeled dynamics with respect to which

the stabilizing nominal feedback must be robust. As pointed out in [16], such unmodeled dynamics may for
example arise in practice, when dealing with nonholonomic wheeled vehicles, because of uncertainties upon
the geometrical features of the vehicle. The present study is in fact essentially motivated by this robustness
requirement. Indeed, explicit “homogeneous” exponential (time-varying) stabilizers u(x, t) for systems (S0) have
been derived in various previous studies (see [13,15], for example). However, as demonstrated recently in [12],
none of these controls solves the robustness problem stated above in the sense that there always exists some
hi(ε, .) for which the origin of the associated controlled system is not stable when ε 6= 0. Note that this negative
result does not contradict the fact that such controllers are robust against less general unmodeled dynamics, as
this is ensured by the existence of a Lyapunov function for the controlled nominal system. It just emphasizes the
fact that, contrary to the case of linear control systems stabilized via the use of linear feedbacks, the existence
of a Lyapunov function for the controlled system is not sufficient to ensure the type of robustness considered
here. This negative result also strongly suggests (although this remains to be rigorously established) that no
continuous feedback u(x, t), not necessarily homogeneous, can be a robust exponential stabilizer. However, it
does not imply that the problem cannot be handled via an adequate dynamic extension of the original nominal
system. Proving the existence, or non-existence, of solutions of this type could thus be a subject for future
studies. As a matter of fact, and as explained below, the present study may already be seen as a step in this
direction.

Feedbacks which are continuous with respect to the state do not represent the only “reasonable” possibility
in order to achieve the desired robustness result. For instance, besides feedbacks which are discontinuous
at the origin, as proposed by several authors in the past (see [3, 8], for example) and for which robustness
issues have seldom been addressed so far, a possibility consists in considering hybrid open-loop/feedback control
strategies such as open-loop controls which are periodically updated from the measurement x(kT ), k ∈ N, of
the state at discrete time-instants. Such a control has features shared by classical piecewise-constant discrete-
time feedbacks, but unlike these (and for the purpose of asymptotic stabilization) the control value between
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two sampling time-instants cannot, in the present case, be constant because this would contradict the known
non-existence (resulting from the violation of Brockett’s condition [2]) of asymptotically stabilizing continuous
pure-state feedbacks u(x). The idea of using this type of control for the purpose of stabilizing the class of
driftless systems considered here is not new. This possibility has sometimes been presented as an extension of
solutions obtained when addressing the open-loop steering problem, i.e. the problem of finding an open-loop
control which steers the system from an initial state to another desired one (see [14,18], for example). Hybrid
continuous/discrete time exponential stabilizers for chained systems, which do not specifically rely on open-loop
steering control, have also been proposed in [21]. However, [1] is to our knowledge the only study where the
robustness problem stated above has been formulated in a similar fashion and where it has been shown that
this problem can be solved by using a hybrid open-loop/feedback control. More precisely, the above reference
i) proposes a methodology for constructing a robust control solution in the specific case (of practical interest)
when the nominal system (S0) is a 2-input n-dimensional chained system, ii) describes sufficient conditions for
the n-dimensional case which, if they are met by the control expression, ensures robust stabilization, and iii)
provides an explicit control expression in the 4-dimensional case (the dimension 4 having been chosen merely to
show that the approach remains tractable for dimensions larger than 3). In fact, although this is not specified
in the above reference, the proposed control does not “strictly” ensure asymptotic stability, in the usual sense
of Lyapunov, of the origin of the perturbed systems (Sε).

In order to be more specific about the latter point, and also clarify the meaning of “periodically” updated
open-loop control applied to a time-continuous system ẋ = f(x, u)”, it is useful to introduce the following
extended control system: 

ẋ = f(x, u)

ẏ =

(∑
k∈N

δkT

)
(x− y−α), 0 < α < T ,

(4)

with T denoting the updating time-period of the control part which depends upon y, δkT the classical dirac
impulse at the time-instant kT , and y−α the delay operator such that y−α(t) = y(t − α). Given a continuous
feedback control u(x, y, t), an initial condition (x(t0), y(t0)) to the controlled extended system is defined by i)
choosing a point (x0, y0) ∈ Rn × Rn, and ii) setting x(t0) = x0, y(t0) = y0 if t0 is not a multiple of T , and
y(t0) = x0 if t0 = kT . The introduction of the extra equation in y just indicates that y(t) is constant and
equal to x(kT ) on the time-interval [kT, (k + 1)T ). Therefore, any control the expression of which, on the
time-interval [kT, (k + 1)T ), is a function of x(kT ) and t, may just be interpreted as a feedback control u(y, t)
for the corresponding extended system. From now on, we will adopt this point of view whenever referring to this
type of control. As commonly done elsewhere, we will also say that a feedback control u(x, y, t) is a (uniform)
exponential stabilizer for the extended system (4) if there exist an open set U ∈ Rn × Rn containing the point
(0, 0), a positive real number γ, and a function β of class K such that:

|(x(t), y(t))| ≤ β(|(x(t0), y(t0))|) exp(−γ(t− t0)) ∀t ≥ t0 ≥ 0; ∀(x(t0), y(t0)) ∈ U (5)

with (x(t), y(t)) denoting any solution of the controlled system. Note that the satisfaction of (5) does not imply
that the control is an exponential stabilizer for the original system (while the converse is true). It is thus
a slightly weaker property. However, except for asking finite-time convergence to zero, it is nearly the best
that can be obtained when using a control which depends continuously upon y, knowing that such a control
cannot by construction asymptotically stabilize the original system. For instance x(t) may well cross zero at a
time-instant which is not a multiple of T , without stopping there. Note that a similar impossibility holds when
the feedback control depends on the integral of the state x: asymptotic stability can only be established for
an extended state which contains the integral of x. This has not prevented linear PID controllers from being
popular and widely employed in practice.
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Let us now come back to the control strategy studied in [1] and interpret it in view of the above definitions.
It yields continuous time-periodic feedbacks u(y, t) (i.e. such that u(y, t+ T ′) = u(y, t) for some T ′ > 0), the
time-periods of which are equal to the updating period T (i.e. T ′ = T ). In our opinion, the importance of
the contribution in [1] comes from that it convincingly demonstrates the possibility of achieving robust (with
respect to unmodeled dynamics, as defined earlier) exponential stabilization (stability being now taken in the
strict sense of Lyapunov) of an extended control system

(S̄0) :


ẋ =

m∑
i=1

fi(x)ui

ẏ =

(∑
k∈N

δkT

)
(x− y−α), 0 < α < T

(6)

via the use of a continuous time-periodic feedback u(y, t).
In the present paper, the exploration of this possibility is carried further on. The first result provides a

sufficient condition under which a time-periodic continuous feedback controller u(y, t) i) exponentially stabilizes
the origin of a system (6), and also ii) exponentially stabilizes the origin of any neighboring system

(S̄ε) :


ẋ =

m∑
i=1

(fi(x) + hi(ε, x))ui

ẏ =

(∑
k∈N

δkT

)
(x− y−α) 0 < α < T

(7)

provided that |ε| is small enough. Then, on the basis of this result, we propose a systematic and complete control
design procedure which only involves a finite number of algebraic operations. Following this design procedure
thus yields entirely explicit feedback laws. The procedure is itself adapted from existing time-periodic open-loop
control design techniques which have been proposed in [11,24] (see also [10] for an early but complete survey of
such techniques) for driftless control systems affine in the control. Although the implementation of the resulting
algorithm is somewhat involved in the general case, we show that simple control expressions can be obtained
for specific classes of systems, as illustrated in the case where the original system (S0) is in the chained form.
Also, with respect to the solution given in [1] for the 4-dimensional chained system, the single control expression
proposed here encompasses all dimensions with no extra work needed.

The paper is organized as follows. The possiblity of achieving asymptotic stabilization with robustness to
errors in the modeling of the system’s control vector fields, via the use of a hybrid time-periodic feedback control,
is illustrated on a simple example in Section 2. For a general driftless affine control system, sufficient conditions
for exponential and robust stabilization are then stated in Section 3. The design of time-periodic feedbacks
u(y, t) which satisfy these conditions is carried out in Section 4. A general control design algorithm, which applies
to any locally controllable driftless system, is first described in Subsection 4.1. The possibility of synthesizing
robust controllers from an homogeneous approximation of the control system is treated in Subsection 4.2. This
yields to imposing an extra condition on the control law. For n-dimensional chained systems, robust feedback
controls the expression of which is simpler (when n > 3) than these obtained by application of the general
algorithm are proposed in Subsection 4.3. A few final remarks are given in Section 5. The proofs of the main
results are reported in the Appendix.

The following notation is used.

• The identity function on Rn is denoted id, |.| is the Euclidean norm, and |.|P is the norm induced by a
positive definite matrix P .
• The transpose of a row-vector (x1, . . . , xn) is denoted as (x1, . . . , xn)′.
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• For any vector field X and smooth function fon Rn, Xf denotes the Lie derivative of f along the vector
field X. When f = (f1, . . . , fn)′ is a smooth map from Rn to itself, Xf denotes the map (Xf1, . . . ,Xfn)′.
• A square matrix A is called discrete-stable if all its eigenvalues are strictly inside the complex unit circle.
• Given a continuous functions g, defined on some neighborhood of the origin in Rn, we denote o(g) (resp.

O(g)) any function or map such that |o(g)(x)|
|g(x)| −→ 0 as |x| −→ 0 (resp. such that |O(g)(x)|

|g(x)| ≤ K in some

neighborhood of the origin). When g = |.|, we write o(x) (resp. O(x)) instead of o(g)(x) (resp. O(g)(x)).

2. A simple example

This example is given so as to get acquainted with the feedback control solutions which are developped
subsequently. Let us consider the following three-dimensional chained system.

(S0) :

 ẋ1 = u1

ẋ2 = u2

ẋ3 = u1x2 .
(8)

While being the simplest control system of relevance to the present study, it is commonly used to model the
kinematics of unicycle-type nonholonomic vehicles. It is also the system which, starting with [20], has triggered
all recent developments about continuous time-varying stabilizers.

Let us consider a modeling error h1 = ε ∂
∂x3

associated with the first control vector field, so that the corre-
sponding “perturbed” control system is

(Sε) :

 ẋ1 = u1

ẋ2 = u2

ẋ3 = u1x2 + εu1 .
(9)

We have chosen this specific modeling error because it is a typical example of a term which “destabilizes” the
origin of the system, whatever the homogeneous continuous time-periodic exponential stabilizer derived for the
nominal system (S0). Instead of such a continuous feedback, let us rather consider the hybrid time-periodic
feedback defined by

u1(x(kT ), t) =
1

T

[
−x1(kT ) + 2π|x3(kT )|1/2sign(x3(kT )) sin

(
2πt

T

)]

u2(x(kT ), t) =
1

T

[
−x2(kT )− 2|x3(kT )|1/2 cos

(
2πt

T

)] (10)

for t ∈ [kT, (k + 1)T ), k ∈ N, and with T ∈ R+ denoting the updating time-period of the control.
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It is in this case quite simple to integrate the equations of the controlled perturbed system. One obtains in
particular

x1((k + 1)T ) = x1(kT ) +

∫ (k+1)T

kT

u1(x(kT ), s) ds = 0

x2((k + 1)T ) = x2(kT ) +

∫ (k+1)T

kT

u2(x(kT ), s) ds = 0

x3((k + 1)T ) = x3(kT ) +

∫ (k+1)T

kT

x2(s)u1(x(kT ), s) + εu1(x(kT ), s) ds

= x3(kT ) +

∫ (k+1)T

kT

u1(x(kT ), s)[ε+ x2(kT ) +

∫ s

kT

u2(x(kT ), τ) dτ ] ds

= x3(kT ) + (ε+ x2(kT ))

∫ (k+1)T

kT

u1(x(kT ), s) ds

+

∫ (k+1)T

kT

u1(x(kT ), s)

∫ s

kT

u2(x(kT ), τ) dτ ds

= −(ε+ x2(kT ))x1(kT ) +
1

2
x1(kT )x2(kT ) + x2(kT )|x3(kT )|sign(x3(kT )) .

(11)

One deduces from (11) that
x1(kT ) = x2(kT ) = 0 ∀k ≥ 1
x3(kT ) = 0 ∀k ≥ 2

and x(t) = 0, ∀t ≥ 2T (since the control law vanishes at x = 0). Therefore, all trajectories of the perturbed
controlled system globally converge to zero in finite time whatever the size of ε.

This example is particular in the sense that we shall not try to guarantee, for every system, finite-time
convergence of the trajectories to zero. In the general case, the objective will be to obtain for the controlled
system a relation in the form

x((k + 1)T ) = Ax(kT ) + εO(x)(kT ) + o(x)(kT ) ,

with A a discrete-stable matrix. Note that this relation is satisfied for the above example with A = 0.

3. Sufficient conditions for exponential and robust stabilization

Prior to stating the main result of this section, we review some properties of Chen-Fliess series that will be
used in the sequel. The exposition is based on [6, 25], and limited here to driftless systems.

A m-valued multi-index I is a vector I = (i1, . . . , ik) with k denoting a strictly positive integer, and i1, . . . , ik
integers taken in the set {1, . . . ,m}. We denote the length of I as |I|, i.e. I = (i1, . . . , ik) =⇒ |I| = k.

Given piecewise continuous functions u1, . . . , um defined on some time-interval [0, T ], and a m-valued
multi-index I = (i1, . . . , ik), we define∫ t

0

uI =

∫ t

0

∫ tk

0

· · ·

∫ t2

0

uik(tk)uik−1
(tk−1) · · ·ui1(t1) dt1 · · ·dtk (t ∈ [0, T ]) . (12)

Given smooth vector fields f1, . . . , fm on Rn, and a m-valued multi-index I = (i1, . . . , ik), we define the k-th
order differential operator fI : C∞(Rn;R) −→ C∞(Rn;R) by

fI g = fi1fi2 · · · fik g . (13)

The following proposition is a classical result (see e.g. [25] for the proof).
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Proposition 1. [25] Consider the analytic system (S0) and a compact set K ⊂ Rn. There exists µ > 0 such
that for M,T ≥ 0 verifying

MT ≤ µ , (14)

and for any control u = (u1, . . . , um) piecewise continuous on [0, T ] and verifying

|u(t)| ≤M , ∀t ∈ [0, T ] , (15)

the solution x(.) of (S0), with x0
∆
= x(0) ∈ K, satisfies

x(t) = x0 +
∑
I

(fI id)(x0)

∫ t

0

uI , ∀t ∈ [0, T ] . (16)

Furthermore, the series in the right-hand side of (16) is uniformly absolutely convergent w.r.t. t ∈ [0, T ] and
x0 ∈ K.

Note that the sum in the right-hand side of equality (16) can be developed as

∞∑
k=1

m∑
i1,... ,ik=1

(fi1 · · · fik id)(x0)

∫ t

0

∫ tk

0

· · ·

∫ t2

0

uik(tk)uik−1
(tk−1) · · ·ui1(t1) dt1 · · · dtk .

Let us also remark that the condition (14), which relates the integration time-interval to the control size, is
specific to driftless systems. For a system which contains a drift term, it is a priori not true that decreasing the
size of the control inputs allows to increase the time-interval on which the expansion (16) is valid. The fact that
this property holds for driftless systems can be viewed as a consequence of time-scaling invariance properties.

We are now ready to state sufficient conditions under which exponential stabilization robust to unmodeled
dynamics is granted.

Theorem 1. Consider an analytic locally controllable system (S0), a neighborhood U of the origin in Rn, and
a function u ∈ C0(U × R+;Rm) with u(x, .) T -periodic for all x. Assume that:

1. there exist α,K > 0 such that |u(x, t)| ≤ K|x|α for all (x, t) ∈ U × [0, T ],
2. the solution x(.) of

ẋ =
m∑
i=1

fi(x)ui(x0, t) , x(0) = x0 ∈ U , (17)

satisfies x(T ) = Ax0 + o(x0) with A a discrete-stable matrix,
3. for any multi-index I of length |I| ≤ 1/α (this assumption is only needed when α < 1),∫ T

0

uI(x) = O(x) . (18)

Then, given a family of perturbed systems (Sε), there exists ε0 > 0 such that the origin of (S̄ε) controlled by
u(y, t) is locally exponentially stable for any ε ∈ (−ε0, ε0).

Remark: A natural question which arises at this point is whether a control feedback which verifies the
assumptions of Theorem 1 can yield asymptotic stability of the origin of the system when an unmodeled
(unknown) drift vector field, say h0(ε, x) such that h0(0, .) = h0(., 0) = 0, is added to the system. In the general
case, when the linear approximation of the nominal system is not controllable, the answer to this question is
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negative. Robustness with respect to such a drift term is only obtained by imposing further restrictions upon
the variation of h0(ε, x) near x = 0, as in the case of continuous homogeneous time-periodic feedbacks. For
instance, it is not difficult to show that if the assumptions of Theorem 1 are verified, then there exists a positive
number γ (> 1) such that the conclusion of the theorem holds when h0(ε, x) is a O(|x|γ). This is however a
rather weak statement, and refinement of this result could be the subject of a complementary study.

4. Control design

This section addresses the problem of constructing explicit controllers that meet the conditions of
Theorem 1. Such controllers have to be exponential stabilizers for the extended system (S̄0). A general design
algorithm is first proposed. It takes advantage of known techniques based on the use of oscillatory open-loop
controls in order to achieve net motion in any direction of the state space. Unfortunately (and unavoidably), the
procedure also inherits the complexity of the abovementioned techniques, itself directly related to the process
of selecting the “right” frequencies which facilitate motion monitoring in the state space. Unsurprisingly, the
selection of these frequencies gets all the more involved that controllability of the system relies on high-order
Lie brackets of the control vector fields. The control design can be carried out from the expression of either
the original system (S0) or any locally controllable homogeneous approximation of (S0). Indeed, working with
an homogeneous approximation preserves the robustness of the feedback law provided that an extra condition
is satisfied by the control law. This is shown after recalling basic definitions and facts about homogeneous sys-
tems. Working with homogeneous approximations is of interest in order to simplify the calculations involving
the control vector fields (this is due to the nilpotent structure of homogeneous vector fields). These approxima-
tions may also exhibit structural properties useful to simplify the control design. This is illustrated on chained
systems for which we propose simple robust controllers.

4.1. A general control design procedure

We present in this section a general algorithm to construct robust and exponential stabilizers for (S0).
The algorithm uses previous results by Sussmann and Liu [24], and Liu [11]. It is also much related to the
one developed in [15] for the construction of continuous time-periodic feedbacks u(x, t) which exponentially
stabilize the origin of a driftless system (S0), but present the shortcoming of not being endowed with the type
of robustness here considered.

The presentation of the algorithm is organized as follows. First, we provide a compact and digest description
of the control construction. Then, we give complementary explanations and comments, which may be useful to
readers who are not familiar with every aspect involved in the construction. These explanations are also used
in the subsequent stability and robustness analysis.

In order to make the exposition more rigorous, we first recall some notations from [26]. To the set of control
vector fields {f1, . . . , fm} we associate a set of indeterminates X = {X1, . . . ,Xm}. Brackets in L(X), the free
Lie algebra in the indeterminates X1, . . . ,Xm, will be denoted with the letter B. To any such bracket, one
can associate a length and a set of indeterminates. For instance, B = [X1, [X2,X1]] has length three, and his
set of indeterminates is {X1,X2,X1}. To each element A in L(X), one can also associate an element in the
control Lie algebra Lie(f) by means of the evaluation operator Ev. More precisely, Ev(f)(A) is the vector
field obtained by plugging in the fj ’s for the Xj’s in A. For instance, if B = [X1,X2], then Ev(f)(B) is the
vector field [f1, f2]. Let us remark that if the control system (S0) were the only one under consideration, the
concept of brackets in free Lie algebras would not be necessary. However, since the objective is to derive a
single control expression which allows to asymptotically stabilize the origin of a whole family of systems (Sε),
it is understandably of interest and useful to pinpoint structural properties which are shared by all members of
this family, independently of small differences in their respective control vector fields. Such properties are more
easily expressed and analyzed in the framework of free Lie algebras.
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Design algorithm

Step 1. Determine n vector fields f̃j (j = 1, . . . , n), obtained as Lie brackets of length `(j) of the control vector
fields fi, and such that the matrix

F̃ (x)
∆
=
(
f̃1(x), . . . , f̃n(x)

)
(19)

is nonsingular at x = 0.

Step 2. Determine a matrix G such that the matrix (In + F̃ (0)G) is discrete-stable (with In denoting the
n-dimensional identity matrix), and define the linear feedback

a(x) =
1

T
Gx . (20)

Step 3. By Step 1, there exists, for each j = 1, . . . , n, a bracket Bj such that f̃j = Ev(f)(Bj). Partition the
set {B1, . . . ,Bn} in homogeneous components P1, . . . , PK , i.e.

i) All brackets in a homogeneous component Pk have the same length l(k), and the same set of indeterminates
{Xτk1

, . . . ,Xτk
l(k)
}.

ii) Given two homogeneous components Pk and Pk′ (with k 6= k′), either l(k) 6= l(k′), or {Xτk1
, . . . ,Xτk

l(k)
} 6=

{Xτk
′

1
, . . . ,Xτk

′

l(k′)
}.

Step 4. The last four steps can be conducted either in the control Lie algebra (c.l.a.) framework or in the
framework of free Lie algebras (f.l.a.)1.
c.l.a.: For every k = 1, . . . ,K, find permutations σ1, . . . , σC(k) in S(l(k)) such that the vector fields[

fτk
σ(1)

,
[
fτk
σ(2)

,
[
. . . , fτk

σ(l(k))

]
. . .
]]

(σ ∈ {σ1, . . . , σC(k)})

form a basis of the linear sub-space (over R) of Lie(f) spanned by the vector fields[
fτk
σ(1)

,
[
fτk
σ(2)

,
[
. . . , fτk

σ(l(k))

]
. . .
]]

(σ ∈ S(l(k))) .

f.l.a.: For every k = 1, . . . ,K, find permutations σ1, . . . , σC(k) in S(l(k)) such that the brackets[
Xτk

σ(1)
,
[
Xτk

σ(2)
,
[
. . . ,Xτk

σ(l(k))

]
. . .
]]

(σ ∈ {σ1, . . . , σC(k)})

form a basis of the linear sub-space (over R) of L(X) spanned by the brackets[
Xτk

σ(1)
,
[
Xτk

σ(2)
,
[
. . . ,Xτk

σ(l(k))

]
. . .
]]

(σ ∈ S(l(k))) .

Step 5.

c.l.a.: For every k ∈ {1, . . . ,K} such that l(k) ≥ 2, determine C(k)
∆
= C(k) Minimally Cancelling (MC) sets

Ωk,c = {ωk,c1 , . . . , ωk,cl(k)}, with c = 1, . . . , C(k), such that

1Respective advantages and drawbacks will be pointed out later.
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i) the family of sets (Ωk,c)k=1,... ,K
c=1,... ,C(k) is independent w.r.t. maxk∈{1,... ,K} l(k),

ii) all elements in these sets have a (positive) common divisor ω̄ (= 2π
T ), i.e.

ωk,ci
ω̄ ∈ Z, ∀(k, c, i),

iii) the C(k) elements gk,c (c = 1, . . . , C(k)) of Lie(f) defined by

gk,c =
∑

σ ∈ S(l(k))

[
fτk
σ(1)

,
[
fτk
σ(2)

,
[
. . . , fτk

σ(l(k))

]
. . .
]]

ωk,c
σ(1)

(
ωk,c
σ(1) + ωk,c

σ(2)

)
· · ·
(
ωk,c
σ(1) + . . .+ ωk,c

σ(l(k)−1)

) (21)

are independent (over R).

For every k ∈ {1, . . . ,K} such that l(k) = 1, just set ωk,11 = 0.
Each family of sets {Ωk,c}c=1,... ,C(k) is used to associate the following sine and cosine functions with Pk

αk,c
τki

(t) =

{
cosωk,ci t (i = 1)

sinωk,ci t (i = 2, . . . , l(k)) .
(22)

f.l.a.: Same as above, with C(k)
∆
= C(k) instead of C(k), each fi replaced by Xi, and Lie(f) replaced by L(X).

Step 6.

c.l.a.: For each k ∈ {1, . . . ,K} and j such that Bj ∈ Pk, determine coefficients µk,cj (c = 1, . . . , C(k)) such that

f̃j =
(−1)l(k)−1

l(k)2l(k)−1

C(k)∑
c=1

µk,cj gk,c . (23)

f.l.a.: Same as above, with f̃j replaced by Bj.

Step 7.

c.l.a. and f.l.a.: For each k ∈ {1, . . . ,K}, determine l(k)C(k) state dependent functions vk,c
τki

which are

O(|x|
1
l(k) ), and such that

l(k)∏
i=1

vk,c
τki

(x) =
∑

j:Bj∈Pk

µk,cj aj(x) (24)

(aj is the j-th component of a defined by (20)).

The following result concludes the description of the algorithm.

Theorem 2. Let

ui(x, t) =


K∑
k=1

C(k)∑
c=1

∑
p:τkp=i

αk,c
τkp

(t)vk,c
τkp

(x) if ∃(k, p) : τkp = i

0 otherwise .

(25)

with C(k) equal to C(k) in the c.l.a. case, and to C(k) in the f.l.a. case. Then,

i) in both cases, u defined by (25) belongs to C0(Rn × R+;Rm), and satisfies the three assumptions of
Theorem 1,
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ii) in the f.l.a. case, local asymptotic stability of the origin of the perturbed system (S̄ε) is guaranted for any

ε such that In + F̃ε(0)G is discrete-stable, where F̃ε denotes the matrix-valued function obtained from (19)

by replacing each f̃j = Ev(f)(Bj) by f̃j,ε = Ev(f + h(ε, .))(Bj).

The above property ii) points out the main advantage of working in the f.l.a. framework: asymptotic stability of

the origin of the controlled perturbed system is simply equivalent to discrete-stability of the matrix In + F̃ε(0)G.
This result is conceptually interesting because it is reminiscent of a classical robustness property obtained in
the case of linear control systems.

We now review all steps of the construction so as to give a few complementary explanations and comments.
At the same time, we show that each step can be carried out.

• Step 1. The existence of n vector fields f̃j which satisfy the required condition is guaranteed by the local
controllability of system (S0). In view of property ii) of Theorem 2, when this set of vector fields is not
unique, the selection of this set has a clear influence on the domain of robustness of the resulting control.
• Step 2. The choice of G, as indicated in Step 2, can be interpreted in the following way. G is calculated

so that the linear feedback a(y) = 1
TGy exponentially stabilizes the origin of the “extended system”


ẋ =

n∑
j=1

f̃j(x)aj

ẏ =

(∑
k∈N

δkT

)
(x− y−α) 0 < α < T

the linear approximation of which, at the origin, is controllable. The matrix G also determines the rate of
exponential convergence of the solutions to the origin. From there, the remaining part of the construction
may be seen as a technique for calculating an “equivalent” control for the system (S̄0) which preserves
this rate of convergence.
• Step 3. The partition (Pk)(k=1,... ,K) may not be unique since there may exist various ways of expressing

a given vector field f̃j as a Lie bracket of the control vector fields fi. Once again, a choice which may also
affect the domain of robustness of the control has to be made.
• Step 4. Note that C(k) ≤ C(k). This inequality characterizes the main advantage of the c.l.a. framework

over the f.l.a. one in terms of complexity. Indeed the “complexity” of the final control expression (25), as
measured by the number of terms and time-periodic functions involved in it, increases with the numbers
C(k) equal to either C(k) or C(k), depending on the framework which is adopted. When C(k) is much
smaller than C(k), this makes an important difference. However, contrary to the case of C(k), the value of
C(k) is insensitive to “small” variations of the control vector fields fi associated with the control system

(S0). It depends only on the value of l(k), and on the set of indeterminates
{
Xτk1

, . . . ,Xτk
l(k)

}
which

are associated with every bracket in Pk. The same remark holds for the coefficients µk,cj involved in the

decomposition (23) of f̃j on a basis of Pk. It is precisely this property of independence associated with
the f.l.a. framework which allows for the strong robustness property ii) of Theorem 2. For small values
of l(k), the determination of C(k) is simple. For example, l(k) = 2⇒ C(k) = 1 (no possible repetition in
this case), l(k) = 3⇒ C(k) = 2 if the indeterminates Xτk1

, Xτk2
, and Xτk3

are all different, and C(k) = 1 if

two of them are the same. The calculation of C(k) becomes rapidly more complicated when l(k) increases.

From here on, the last steps of the construction will be commented upon in the c.l.a. case only. However,
all properties that we shall discuss also hold in the f.l.a. case. The transposition of one case to the other
just requires to interchange fi with the indeterminate Xi, and f̃j with Bj.
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• Step 5. This is the central step of the construction. Let us first recall the definitions of a Minimally
Cancelling (MC) set and of the property of independence with respect to an integer p for a family of finite
subsets of R [11, 24].

Definition 1. [11,24] Let Ω be a finite subset of R and |Ω| denote the number of elements of Ω. The set
Ω is said to be “Minimally Canceling” (in short, MC) if and only if:

i)
∑
ω∈Ω

ω = 0,

ii) this is the only zero sum with at most |Ω| terms taken in Ω with possible repetitions:∑
ω∈Ω

λωω = 0

∑
ω∈Ω

|λω| ≤ |Ω|

(λω)ω∈Ω ∈ Z|Ω|


=⇒

 (λω)ω∈Ω = (0, . . . , 0)
or (1, . . . , 1)
or (−1, . . . ,−1).

(26)

Definition 2. [11, 24] Let (Ωξ)ξ∈E be a finite family of finite subsets Ωξ of R. The family (Ωξ)ξ∈E is
said to be “independent with respect to p” if and only if:∑

ξ∈E

∑
ω∈Ωξ

λωω = 0

∑
ξ∈E

∑
ω∈Ωξ

|λω| ≤ p

(λω)ω∈Ωξ,ξ∈E ∈ ZΣ|Ωξ |


=⇒

∑
ω∈Ωξ

λωω = 0 ∀ξ ∈ E. (27)

The interest of MC sets in our context comes mainly from the following result proved by Kurzweil and
Jarnik [9] (see also [11]).

Proposition 2. [9] Let f1, . . . fl be smooth vector fields, and αi (i = 1, . . . , l) be integrable functions
such that

|I| < l =⇒

∫ T

0

αI = 0 .

Then,

∑
I = (σ(1), . . . , σ(l))

σ ∈ S(l)

fI

∫ T

0

αI

=
1

l

∑
I = (σ(1), . . . , σ(l))

σ ∈ S(l)

[fσ(1), [fσ(2), [. . . , fσ(l)] . . . ]]

∫ T

0

αI ,

with S(l) denoting the group of permutation of l elements.

The stabilizing properties of the feedback control (25) much rely on the combination of the above
proposition with a property of sine and cosine functions which is stated in the next proposition (the proof
of which involves standard computations and is thus omitted).
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Proposition 3. Let Ω = {ω1, . . . , ωl} denote a MC set such that the ωj’s have a common divisor ω̄

(= 2π
T

). Define also

αi(t) =

{
cosωit (i = 1)
sinωit (i = 2, . . . , l) .

(28)

Then, for any I = (σ(1), . . . , σ(p)) (σ ∈ S(p)), with |I| = p ≤ l

∫ T

0

αI =


0 if |I| < l

(−1)l−1T

2l−1

1

ωσ(1)(ωσ(1) + ωσ(2)) · · · (ωσ(1) + . . .+ ωσ(l−1))
if |I| = l .

(29)

The important relation which results from the combination of the above two propositions is the following

∑
I = (σ(1), . . . , σ(l))

σ ∈ S(l)

fI

∫ T

0

αI

=
(−1)l−1T

l 2l−1

∑
I = (σ(1), . . . , σ(l))

σ ∈ S(l)

[fσ(1), [fσ(2), [. . . , fσ(l)] . . . ]]

ωσ(1)(ωσ(1) + ωσ(2)) · · · (ωσ(1) + . . .+ ωσ(l−1))
·

(30)

The existence of MC sets Ωk,c which fulfill conditions i) and iii) of Step 5 is proved in [11]. Furthermore,
it is shown in this reference that the set of admissible sets Ωk,c (seen as a subset of R

∑
k l(k)C(k)) is open.

Therefore, each element of Ωk,c can be chosen rational, and the existence of a common divisor is in this
case automatically ensured by the fact that any finite set of rational numbers has a common divisor.

We may remark that condition iii) is generically satisfied. This is partly due to the fact that, within the
set of finite-dimensional matrices of real numbers the subset of full-ranked matrices of rational numbers is
dense (more details about this issue can be found in [11]). As a consequence, a typical way of carrying out
Step 5 consists in first determining one family of MC sets composed of rational numbers, such that this
family is independent w.r.t. maxk∈{1,... ,K}l(k), and then verifying for each k ∈ {1, . . . ,K} that the third
condition is satisfied. Also, once the common divisor ω̄1 associated with this family has been determined,
one can subsequently impose another value ω̄2 by multiplying all elements in the sets Ωk,c by ω̄2

ω̄1
. A

further possible requirement, which tends to complicate the procedure, is to have the smallest element in
the sets Ωk,c equal to the common divisor of the family.
• Step 6. Let j ∈ {1, . . . , n}. If Bj ∈ Pk, then f̃j belongs to the C(k)-dimensional vector space generated

by the vector fields [
fτk
σ(1)

,
[
fτk
σ(2)

,
[
. . . , fτk

σ(l(k))

]
. . .
]]

(σ ∈ S(l(k))) .

Since the vector fields gk,c (c ∈ {1, . . . , C(k)}) defined in (21) also belong, by construction, to this space,

and since they are linearly independent (by Step 5), they form a basis and f̃j can be expressed as a linear

combination of them. Relation (23) just indicates that the coefficients µk,cj , multiplied by a given factor,
are the coefficients of this decomposition. Note that, in the context of the present construction, another
advantage of working in the f.l.a. framework comes from that this set of coefficients can be determined
beforehand, since it is independent of the vector fields fi themselves.
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At this point of the construction, one deduces from (21, 23, 30), that

Bj ∈ Pk ⇒ f̃j =
1

T

C(k)∑
c=1

µk,cj

∑
I =

(
τkσ(1), . . . , τ

k
σ(l(k))

)
σ ∈ S(l(k))

fI

∫ T

0

αk,cI . (31)

• Step 7. There are many possible choices for the functions v. For example, one can take

vk,c
τki

(x) =



∣∣∣∣∣ ∑
j:Bj∈Pk

µk,cj aj(x)|
1
l(k) sign

 ∑
j:Bj∈{Pk}

µk,cj aj(x)

 (i = 1)∣∣∣∣∣ ∑
j:Bj∈Pk

µk,cj aj(x)|
1
l(k) (i = 2, . . . , l(k)) .

(32)

Finally, note that, in view of (24, 30, 31),

K∑
k=1

C(k)∑
c=1

∑
I = (τkσ(1), . . . , τ

k
σ(l(k)))

σ ∈ S(l(k))

fI id(x)

∫ T

0

(αv)I
k,c

(x) = T

K∑
k=1

∑
j:Bj∈Pk

f̃j(x)aj(x)

= T

n∑
j=1

f̃j(x)aj(x) .

(33)

4.2. Control design from a homogeneous approximation

It is often convenient and simpler to work with approximations of control systems. For instance, linear
approximations are commonly used for feedback control design when they are controllable (or at least stabiliz-
able). When the linear approximation of the system, evaluated at the equilibrium which feedback control is in
charge of stabilizing, is not stabilizable, the extension of the notion of linear approximation yields to homoge-
neous controllable approximations. Using such an approximation is particularly well adapted to the design of
continuous homogeneous feedbacks which render the closed-loop system homogeneous of degree zero. The reason
is that asymptotic stabilization of the origin of the homogeneous approximation automatically ensures that the
origin of the initial control system is also asymptotically (locally) stabilized by the same feedback control law. It
is however important to realize that this property does not necessarily hold when using hybrid controllers such
as those which we are considering here. It is not difficult to work out simple examples which illustrate this fact.
However, we show in this section that a robust controller for the system (S0) can be derived from the knowledge
of a homogeneous approximation of this system, provided that some extra condition is satisfied by the control
law. This condition is stated in a theorem, after recalling a few definitions and properties about homogeneous
systems. A complementary proposition indicates how the control design algorithm previously described can be
completed in order to cope with the use of homogeneous approximations.

Given λ > 0 and a weight vector r = (r1, . . . , rn) (ri > 0 ∀i), a dilation δrλ is a map from Rn to Rn defined
by:

δrλ(z1, . . . , zn) = (λr1z1, . . . , λ
rnzn) .
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A function f ∈ C0(Rn;R) is homogeneous of degree l with respect to the family of dilations δrλ (λ > 0), or, more
concisely, δr-homogeneous of degree l, if

∀λ > 0, f(δrλ(z)) = λlf(z) .

A δr-homogeneous norm can be defined as a positive definite function of x, δr-homogeneous of degree one.
Although this is not a “true” norm when the weight coefficients are not all equal, it still provides a means of
“measuring” the size of x.

A continuous vector field X on Rn is δr-homogeneous of degree d if, for all i = 1, . . . , n, the function
x 7−→ Xi(x) is δr-homogeneous of degree ri + d. According to these definitions, homogeneity is coordinate
dependent, however it is possible to define the above concepts in a coordinate independent framework [7, 19].

The following property is used extensively in the sequel. Given a family of dilations δrλ (λ > 0), a smooth
function f and a smooth vector field X, δr-homogeneous of degree deg(f) and deg(X) respectively, the function
Xf is δr-homogeneous of degree

deg(Xf) = deg(X) + deg(f) .

Finally, we say that the system

ż =
m∑
i=1

bi(z)ui (34)

is a δr-homogeneous approximation of (S0) if:

1. the change of coordinates φ: x 7−→ z transforms (S0) into

ż =
m∑
i=1

(bi(z) + gi(z))ui , (35)

where bi is δr-homogeneous of some degree di < 0, and gi denotes higher-order terms, i.e. such that gi,j
(the j-th component of gi) satisfies

gi,j = o(ρrj+di) , (j = 1, . . . , n) (36)

where ρ is a δr-homogeneous norm;
2. the system (34) is controllable.

Hermes [5], and Stefani [22] have shown that any driftless system (S0) satisfying the LARC (Lie Algebra Rank
Condition) at the origin (2) has a homogeneous approximation. Homogeneous approximations of controllable
driftless systems are not unique in general. Explicit construction of such approximations requires to find both
a weight vector and a change of coordinates for which properties 1 and 2 above are fulfilled. A constructive
procedure can be found in [22,23] (see also [5] but with a less explicit change of coordinates).

A particular homogeneous approximation of (S0) corresponds to the case when the vector fields bi are all
homogeneous of the same degree −1. Let us briefly recall some features of this approximation.
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Consider the control filtration F of Lie(f1, . . . , fm), defined as F
∆
= (Fj)j≥0 with

F0
∆
= {0}

F1
∆
= span{f1, . . . , fm}

F2
∆
= span{f1, . . . , fm, [f1, f2], . . . , [f1, fm], . . . , [fm−1, fm]}
...

Fk
∆
= span{all Lie brackets of the f ′is of length ` ≤ k}
...

Denote also

Fk(0)
∆
= span {f(0) : f ∈ Fk} ,

and nk
∆
= dimFk(0). Then, by the LARC at the origin, there exists a smallest integer P such that

0 = n0 < n1 ≤ n2 ≤ . . . ≤ nP−1 < nP = n .

Now, define the weight vector r according to

rj
∆
= p for np−1 + 1 ≤ j ≤ np (p = 1, . . . , P ) . (37)

Note that the sequence r1, r2, . . . , rn is increasing, i.e. 1 = r1 ≤ r2 ≤ . . . ≤ rn = P . The results given in [5, 22]
imply:

Proposition 4. [5,22] There exists a δr-homogeneous approximation (34) of system (S0) with r given by (37).
Furthermore, every control vector field of the approximating system is δr-homogeneous of degree −1.

We refer the reader to the references cited above for the construction of a change of coordinates φ that
transforms (S0) into (35). Let us remark that the control vector fields bi of the approximating homoge-
neous system (34) are polynomials in the z coordinates, and that {b1, . . . , bm} forms a nilpotent set of vector
fields —more precisely, any Lie bracket of the bi’s of length strictly larger than P is identically zero.

Since homogeneous approximations are nilpotent, for any time-function u, the Chen-Fliess series associated
with any such an approximation only involves a finite number of terms. This property is useful when trying to
derive exponential stabilizers for the homogeneous approximation of a given system. Of course, such controllers
are of interest only if they are also exponential stabilizers for the original system. The following theorem points
out sufficient conditions on the control law to ensure that such is the case.

Theorem 3. Consider a δr-homogeneous approximation (34) of (S0), with di
∆
= deg(bi) (i = 1, . . . ,m), and

a control function u ∈ C0(U × R+;Rm) such that the three assumptions in Theorem 1 are verified for this
approximating system. Assume furthermore that the following assumption, which is a stronger version of the
third assumption in Theorem 1, is also verified for the approximating system:

3-bis. for any multi-index I = (i1, . . . , i|I|) of length |I| ≤ 1/α,∫ T

0

uI(z) =
∑

k:rk≥‖I‖

aI,kzk + o(z) , (38)

where ‖I‖
∆
= −

|I|∑
j=1

dij , and the aI,k’s are some scalars.

Then, the three assumptions of Theorem 1 are verified for the system (35).
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Note that it is not required that all di’s be equal, as it occurs when the approximation is obtained by using
the dilation defined by (37).

When applying the algorithm of Section 4.1 to the approximation (34), the control law u given by (25) may
not satisfy the extra condition 3-bis of Theorem 3. However, it is possible to impose extra requirements on the
matrix G defined in Step 2 so as to guarantee the satisfaction of this condition. For instance, the following
result is proved in [17].

Proposition 5. Consider a δr-homogeneous approximation (34) of (S0), with every control vector field of this
system being δr-homogeneous of degree −1. Without loss of generality, we assume that the variables zi are
ordered by increasing weight, i.e.

r1 ≤ r2 ≤ . . . ≤ rn ,

and decompose z as z = (z1, . . . , zP ), where each zp (1 ≤ p ≤ P ) is the sub-vector of z whose components have
same weight rp (r1 ≤ rp ≤ rn) with

r1 = r1 < r2 < . . . < rP = rn .

Consider the control design algorithm described in Section 4.1 and applied to (34).

Let b̃j (j ∈ {1, . . . , n}) denote the vector fields defined according to Step 1 of the algorithm, and

B̃(z)
∆
= (b̃1(z), . . . , b̃n(z)) .

Due to the ordering of the variables zi, the matrix B̃(z) is block lower triangular, and block diagonal at z = 0,
i.e.

B̃(0) =


B̃11 0 · · · 0

0 B̃22
...

...
...

. . . 0

0 · · · · · · B̃PP

 .

Assume that the control gain matrix G involved in Step 2 of the algorithm is chosen as follows

G = B̃(0)−1(H − In)

with the matrix H being block upper triangular, i.e.

A =


H11 ? · · · ?

0 H22 . . .
...

...
. . .

. . . ?
0 · · · 0 HPP

 ,

and discrete-stable (⇔ Hii is discrete-stable for i ∈ {1, . . . , P}).
Then, the three assumptions of Theorem 1 are verified for the system (S0).

4.3. Robust exponential stabilizers for chained systems

In some cases, it is possible to take advantage of specific structural properties associated with the control
system under consideration, in order to derive robust control laws that are simpler than those obtained by
application of the general algorithm presented in Section 4.1.
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We illustrate this possibility in the case of the following n-dimensional chained system

(S0)



ẋ1 = u1

ẋ2 = u2

ẋ3 = u1x2

...
ẋn = u1xn−1 .

(39)

The next result points out a set of robust exponential stabilizers for this system.

Theorem 4. With the control function u ∈ C0(Rn × R+;R2) defined by
u1(x, t) =

1

T
[(k1 − 1)x1 + 2πρq(x) sin(ωt)]

u2(x, t) =
1

T

[
(k2 − 1)x2 +

n∑
i=3

2i−2(i− 2)!(ki − 1)
xi

ρi−2
q (x)

cos((i− 2)ωt)

]
,

(40)

with

T = 2π/ω (ω 6= 0) ,

ρq(x) =
n∑
j=3

aj |xj |
1

q+j−2 , (q ≥ n− 2 , aj > 0) ,

|ki| < 1 , ∀i = 1, . . . , n ,

(41)

the three assumptions in Theorem 1, and the extra assumption in Theorem 3, are verified for the system (39).

Corollary 1. (of Ths. 3 and 4) With the control function (40), the three assumptions in Theorem 1 are verified
for any analytic driftless system for which the chained system (39) is a δr-homogeneous approximation, with
r = (1, q, . . . , q + n− 2) and q ≥ n− 2.

5. Final remarks

We conclude the present study with a few general remarks. The first one concerns the assumption of analycity
which has been made on the control vector fields of the system (S0). In fact, the main results of the study
remain valid when the control vector fields are smooth only, or even of class Ck with k large enough depending
on the structure of the system’s Control Lie Algebra. The proofs can be carried out in the same manner except
for mild complications which arise in particular from using a finite expansion of the control system’s solutions
instead of the infinite Chen-Fliess expansion. Such a finite expansion can be derived in the same way as a Taylor
expansion with integral remainder is obtained for a smooth function.

The second remark concerns possible applications of Theorem 1 in order to construct robust exponential
stabilizers. In Section 4, this result was combined with the use of sinusoidal functions of time in the control
expression. However, there is no obligation for the control law to depend on time in this manner. For instance,
when the system (S0) is known to be differentially flat [4], adequate control functions can be obtained by
considering specifically tailored flatness-based solutions to the open-loop steering problem, as done for example
in [1] in the case of chained systems. Is is worth mentioning at this point that, although the control design
approach and robustness analysis in [1] are very different from the ones developed in the present paper, the
specific conditions imposed in this reference on the control law imply that the assumptions of Theorem 1 are
verified. This suggests that these assumptions are not unduly strong and also illustrates the fact that the
domain of application of Theorem 1 extends to different control design techniques.

How does the general control design procedure described in Section 4.1 compare with the related one
developed in [15] for the design of exponentially stabilizing continuous time-periodic feedbacks? Besides the
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fact, already pointed out before, that the latter method fails to produce controls which are robust in the sense
considered in the present paper, the number of calculations required to synthesize the control law is also gener-
ally much higher and the resulting control expression significantly more complicated (because of state dependent
terms which only vanish when the state is constant). Periodic dependence with respect to time also involves high
frequencies resulting in highly oscillatory trajectories (a feature rarely desirable when dealing with mechanical
systems), whereas the construction here proposed allows for choosing the control frequencies independently of
the asymptotic rate of convergence.

Nonetheless, we are also aware that the hybrid open-loop/feedback controls here considered carry their own
limitations the importance of which remains to be evaluated in future studies. For instance, just to cite a
slightly uncommon issue, robustness with respect to modeling errors has been obtained under the assumption
that the updating period of the control, i.e. the time interval during which the control is applied in open-loop
fashion, is an exact multiple of the periods of the time functions involved in the control law. It is possible to
show (this is beyond the scope of this study) that the slightest violation of this assumption, while unavoidable in
practice for reasons that anyone having control implementation in mind will easily figure out, almost invariably
results in the loss of stability of the origin of the controlled system. This means that the control is not robust
with respect to the imperfect verification of this assumption. Although the source of this robustness problem
is little connected with the modeling of the control system itself, its practical consequences should probably
not be disregarded when attempting to address the complex and delicate issue of comparing different control
techniques.

Appendix

Proof of Theorem 1

The proof much relies on the following lemma.

Lemma 1. Given ε1 > 0, there exists δ > 0 such that, for |x0| ≤ δ and |ε| ≤ ε1, the solution of

ẋ =
m∑
i=1

(fi(x) + hi(ε, x)) ui(x0, t) , x(0) = x0 (42)

is defined on [0, T ] and satisfies

x(T ) = Ax0 + β(ε, x0) + γ(ε, x0) + o(x0) (43)

with

|β(ε, x0)|

|x0|
→ 0 as ε→ 0 uniformly in x0 (|x0| ≤ δ) (44)

|γ(ε, x0)|

|x0|
→ 0 as x0 → 0 uniformly in ε (|ε| ≤ ε1) . (45)

The proof of this lemma is given at the end of this section.

Existence of the solutions of the system (S̄ε) controlled by u(y, t), when the initial conditions x0 and y0 are
close enough to the origin, can easily be established (details are left to the interested reader) once it is proven
that these solutions at least exist on a small time-interval and are uniformly bounded with respect to x0 and
y0. Existence on a small time-interval is in fact granted by application of Proposition 1 (as illustrated in the
proof of Lem. 1), while uniform boundedness of the solutions simply results from the property of (local) stability
which is proven below.
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In order to prove that the origin of the system (S̄ε) controlled by u(y, t) is locally (uniformly) exponentially
stable, one must establish that i) the solutions of this system converge exponentially to zero (uniformly with
respect to the initial conditions (t0, x0, y0)), and ii) the origin of the controlled system is stable.

Since A is a discrete-stable matrix, there exists a positive definite matrix P such that |A|P < 1 (⇒ ∃τ < 1 :
|Ax|P ≤ τ |x|P ). For the sake of simplifying the notation, and keeping in mind that subsequent normed vectors
will refer to the norm induced by the matrix P , we will just drop the index P in the remaining of the proof.

Exponential convergence: Let (xε(., t0, x0, y0), yε(., t0, x0, y0)) denote the solution of the controlled system
(S̄ε) with initial conditions (t0, x0, y0), t0 ∈ [k0T, (k0 + 1)T ), k0 ∈ N. Then for any k ∈ N such that t0 ≤ kT ,
and any t ∈ [kT, (k + 1)T ), this solution satisfies ẋ =

m∑
i=1

(fi(x) + hi(ε, x))ui(x(kT ), t)

ẏ = 0 , y(t) = x(kT ).

(46)

In order to show the exponential convergence to zero of the trajectories of (46), it is clearly sufficient to show
that the x component converges exponentially to the origin. In view of relations (43-45) in Claim 1, there exist
ε0 > 0, δ0 > 0, and a positive real number τ < 1 such that, for |x0| ≤ δ0 and ε ≤ ε0

|xε((k + 1)T, t0, x0, y0)| ≤ τ |xε(kT, t0, x0, y0)| , ∀k > k0 . (47)

This already establishes that the sequence {xε(kT, t0, x0, y0)}k∈N converges exponentially to zero, uniformly
with respect to the initial conditions (t0, x0, y0).

In order to infer uniform exponential convergence to zero of xε(t, t0, x0, y0), it is thus sufficient to show that

|xε(kT + s, t0, x0, y0)| ≤ K|xε(kT, t0, x0, y0)|η, ∀s ∈ [0, T ) , ∀k > k0 , (48)

for some positive constants K and η independent of t0, x0, y0. Since u is T -periodic

xε(kT + s, t0, x0, y0) = xε(s, 0, xε(kT, t0, x0, y0), yε(kT, t0, x0, y0))
= xε(s, 0, xε(kT, t0, x0, y0), xε(kT, t0, x0, y0)) .

Therefore (48) is equivalent to

|xε(s, 0, x0, x0)| ≤ K|x0|
η, ∀s ∈ [0, T ) . (49)

From Assumption 1, and the continuity of the vector fields fi, and hi, the above inequality follows by the
classical Gronwall lemma.

Uniform stability of the origin: We distinguish two cases, according to whether t0 is, or is not, a multiple
of T .

Case 1: t0 is not a multiple of T .
Then there exists k0 ∈ N such that k0T < t0 < (k0 + 1)T . There also exists an open ball Bε ∈ Rn centered
on 0 such that the function (t, t0, x0, y0) 7→ xε(t, t0, x0, y0) is continuous on the set {(t, t0, x, y): t0 ≤ t ≤
(k0 + 1)T, t0 ∈ (k0T, (k0 + 1)T ), x ∈ Bε, y ∈ Bε}. Therefore, the function νε defined by

νε(x0, y0)
∆
= sup
t0∈(k0T,(k0+1)T )

sup
t∈[t0,(k0+1)T )

|xε(t, t0, x0, y0)| (50)

is itself continuous on Bε×Bε. Note that νε(0, 0) = 0, since xε(t, t0, 0, 0) = 0, ∀t ≥ t0, and that ν(x0, y0) ≥ |x0|.
Furthermore, there exists δε > 0 such that νε(x0, y0) < min(1, rBε), ∀(x0, y0): |x0| ≤ δε, |y0| ≤ δε, with rBε
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denoting the radius of Bε. Recall also that

|yε(t, t0, x0, y0)| = |y0|, ∀t0 ∈ (k0T, (k0 + 1)T ), ∀t ∈ [t0, (k0 + 1)T ). (51)

Now, since by (47) and (48)

|xε(t, t0, x0, y0)| ≤ K|xε((k0 + 1)T, t0, x0, y0)|η, ∀t ≥ (k0 + 1)T,

and

|yε(t, t0, x0, y0)| ≤ |xε((k0 + 1)T, t0, x0, y0)|, ∀t ≥ (k0 + 1)T,

one deduces from (50) and (51) (using also the fact that |(x, y)| ≤ |x|+ |y|) that

|xε(t, t0, x0, y0), yε(t, t0, x0, y0)| ≤ Kνε(x0, y0)η +max(νε(x0, y0), |y0|),
∀t ≥ t0, ∀(x0, y0) : |x0| ≤ δε, |y0| ≤ δε.

(52)

Case 2: t0 is a multiple of T (i.e. t0 = k0T ).
Then y(0) = x0, and one easily obtains in this case

|xε(t, t0, x0, y0), yε(t, t0, x0, y0)| ≤ K|x0|
η + |x0| , ∀t ≥ t0, ∀(x0, y0) : |x0| ≤ δε, |y0| ≤ δε. (53)

The comparison of the right-hand sides of inequalities (52) and (53) shows that (52) holds in fact for every value
of t0. To prove Theorem 1, there only remains to prove Lemma 1.

Proof of Lemma 1. Let us first consider the issue of existence of the solutions of system (42). This system can
equivalently be written as a system in Rn+1 with (x, ε) as state vector, and (u, um+1 ≡ 0) as control vector: ẋ =

m∑
i=1

(fi(x) + hi(ε, x)) ui(x0, t)

ε̇ = um+1
∆
= 0 .

By applying Proposition 1 to this system, one deduces that for any compact set S × [−ε1, ε1], S ⊂ U , there
exists µ > 0 such that, if (14) and (15) are satisfied, the solution of (42) is defined on [0, T ] and can be expanded
in the form of a Chen-Fliess series. Using Assumption 1 of Theorem 1, which implies that |u(x, t)| tends to zero
as |x| tends to zero, one also deduces that for some positive δ, (14) and (15) are satisfied if |x0| ≤ δ. Existence
(and uniqueness) of the solutions of (42) is therefore guaranteed, and these solutions can be expanded, on [0, T ],
as

x(t) = x0 +
∑
I

((f + hε)I id)(x0)

∫ t

0

uI(x0) ,

with hε,i(.)
∆
= hi(ε, .). We may rewrite this equality as

x(t) = x0 +
∑
I

(fI id)(x0)

∫ t

0

uI(x0) +
∑
I

(dhεI id)(x0)

∫ t

0

uI(x0) . (54)

Here, dhεI = di1 · · · dik (for I = (i1, . . . , ik)), with di taken in {fi, hε,i} and the product dhεI involving at least
one hε,i. Note that each series in (54) is convergent uniformly w.r.t. x0 (|x0| ≤ δ′, δ′ possibly smaller that δ), ε
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(|ε| ≤ ε1), and t ∈ [0, T ]. This simply results from the existence (previously established) of x(t), for t ∈ [0, T ],
and the fact that the first series is convergent since

x0 +
∑
I

(fI id)(x0)

∫ t

0

uI(x0) (55)

is precisely the Chen-Fliess expansion associated with (S0). Moreover, by Assumption 2 of Theorem 1,

x0 +
∑
I

(fI id)(x0)

∫ T

0

uI(x0) = Ax0 + o(x0). (56)

Let us now define β(ε, x0) and γ(ε, x0) as follows

β(ε, x0)
∆
=

∑
|I|≤1/α

(dhεI id)(x0)

∫ T

0

uI(x0) , γ(ε, x0)
∆
=

∑
|I|>1/α

(dhεI id)(x0)

∫ T

0

uI(x0), (57)

so that ∑
I

(dhεI id)(x0)

∫ T

0

uI(x0) = β(ε, x0) + γ(ε, x0) , (58)

From Assumption 1 and 3 of Theorem 1, each iterated integral involved in (57) satisfies, in the neighborhood
of x0 = 0, ∣∣∣∣∣

∫ T

0

uI(x0)

∣∣∣∣∣ ≤ K|x0|

for some positive constant K. This implies, in particular, that

|β(ε, x0)|

|x0|
≤ K

∑
|I|≤1/α

|(dhεI id)(x0)| .

Recalling that each product dhεI contains at least one hε,i and that hi(0, x) = 0, ∀x ∈ Rn, one deduces that

every function (ε, x0) 7→ dhεI id)(x0) involved in right-hand side of the above inequality is continuous w.r.t x0

and ε, and vanishes at ε = 0 . Therefore, for δ small enough, and using the fact that the number of multi-indices
I such that |I| < 1/α is finite

sup
|x0|≤δ

|β(ε, x0)|

|x0|
−→ 0 as ε −→ 0 .

This establishes (44). Let us now define

ũi(x0, t)
∆
=
ui(x0, t)

|x0|α−σ
(i = 1, . . . ,m)

with σ > 0 so that, by Assumption 1 of Theorem 1, ũi is continuous. Then,

γ(ε, x0) =
∑

|I| > 1/α

|x0|
|I|(α−σ)(dhεI id)(x0)

∫ T

0

ũI(x0) .
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Choosing σ small enough so that |I|(α − σ) ≥ 1 + µ0 > 1 for every I such that |I| > 1/α, and since, from
Proposition 1, the series ∑

|I|>1/α

(dhεI id)(x0)

∫ T

0

ũI(x0)

is uniformly absolutely convergent for x0 small enough, one obtains (provided that |x0| < 1)

|γ(ε, x0)| ≤ |x0|
1+µ0 S(ε, x0) (59)

with

S(ε, x0)
∆
=

∑
|I|>1/α

|(dhεI id)(x0)| |

∫ T

0

ũI(x0)| ,

a positive continuous function. Relation (45) directly follows from this inequality, and this concludes the proof
of Lemma 1.

Proof of Theorem 2

We first start with the proof of i).
Verification of Assumption 1: It follows directly from the definition (25) of u and from Step 7, which

requires each function vk,c
τki

to be a O(|x|
1
l(k) ).

Verification of Assumption 2: Since every τkp belongs to {1, . . . ,m},

m∑
i=1

∑
p:τkp=i

fiα
k,c
τkp
vk,c
τkp

=

l(k)∑
s=1

fτks α
k,c
τks
vk,c
τks
,

so that, by (25),

m∑
i=1

fi(x)ui(x0, t) =
K∑
k=1

C(k)∑
c=1

l(k)∑
s=1

fτks (x)αk,c
τks

(t)vk,c
τks

(x0) . (60)

To simplify the notations, let us introduce the following onto map from U ⊂ (N − {0}) × (N − {0}) to V =

{1, . . . ,
∑K
k=1 C(k)}

q : (k, c) 7−→ q = c+
k−1∑
i=0

C(i) (with C(0) = 0) , (61)

and the inverse map

q−1 : q ∈

{
k−1∑
i=0

C(i) + 1, . . . ,
k∑
i=0

C(i)

}
7−→ (k(q), c(q))

∆
=

(
k, q −

k−1∑
i=0

C(i)

)
. (62)

We can then rewrite (60) as

m∑
i=1

fi(x)ui(x0, t) =

Q∑
q=1

S(q)∑
s=1

Zqs (x)γqs (x0, t) , (63)
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with

γqs
∆
= αqsv

q
s

αqs
∆
= α

k(q),c(q)

τ
k (q)
s

vqs
∆
= v

k(q),c(q)

τ
k (q)
s

(64)

Zqs
∆
= f

τ
k (q)
s

S(q)
∆
= l(k(q)))

Q
∆
=

K∑
k=1

C(k).

As a consequence, the solution at time T of ẋ =
∑m
i=1 fi(x)ui(x0, t), with x(0) = x0, is given by

x(T ) = x0 +
+∞∑
i=1

Q∑
q1,... ,qi=1

S(q1))∑
s1=1

· · ·

S(qi)∑
si=1

(Zq1s1 . . . Z
qi
si
id)(x0)

∫ T

0

∫ ti

0

. . .

∫ t2

0

γqisi (x0, ti) . . .

γq1s1 (x0, t1) dt1 . . . dti . (65)

Lemma 2. Consider J (≤Maxk∈{1,... ,K}l(k)) functions αj (j ∈ {1, . . . , J}) taken in the set of trigonometric

functions αk,c
τki

defined by (22), with l(k) ≥ 2.

Let ωj denote the frequency associated with the function αj , and define the function Fα1,... ,αJ : [0, T ] → R as
follows

Fα1,... ,αJ (t) =

∫ t

0

∫ tJ

0

. . .

∫ t2

0

αJ(tJ ) . . . α1(t1) dt1 . . . dtJ . (66)

If, for each M.C. set Ωk,c, the set{ω1, . . . , ωJ} contains at most l(k) elements which belong to Ωk,c, without
containing Ωk,c itself, then Fα1,... ,αJ (T ) = 0.

The above technical result is just needed to establish the following lemma.

Lemma 3. The iterated integral

∫ T

0

∫ ti

0

. . .

∫ t2

0

γqisi (x0, ti) . . . γ
q1
s1

(x0, t1) dt1 . . . dti (67)

is a o(x0) when some of the qj’s (j ∈ {1, . . . , i}) are not equal, and when q1 = q2 = · · · = qi
∆
= q and

(s1, . . . , si) 6= (σ(1), . . . , σ(S(q))), ∀σ ∈ S(S(q)).

The proofs of these lemmas are given at the end of this section.

In view of Lemma 3, using also the fact that each vqisi (x0) is (by Step 7) a o(|x0|a) for some positive a so
that one can infer uniform convergence arguments similar to these developped in the proof of Lemma 1 (65)
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simplifies to

x(T ) = x0 +

Q∑
q=1

∑
σ∈S(S(q))

(Zqσ(1) . . . Z
q
σ(S(q)) id)(x0)

∫ T

0

∫ tS(q)

0

. . .

∫ t2

0

γqσ(S(q))(x0, tS(q)) . . .

. . . γqσ(1)(x0, t1) dt1 . . . dtS(q) + o(x0)

= x0 +
K∑
k=1

C(j)∑
c=1

∑
I = (τkσ(1), . . . , τ

k
σ(l(k)))

σ ∈ S(l(k))

(fI id)(x0)

∫ T

0

αk,cI vk,cI (x0) + o(x0)

= x0 + T F̃ (x0)a(x0) + o(x0)

= (In + F̃ (0)G)x0 + o(x0) ,

(68)

where the second and third equalities come from (64) and (33), and the fourth one from (20). Assumption 2 is
thus verified by construction of G in Step 2.

Verification of Assumption 3: From (25) and (64),

ui(x, t) =

Q∑
q=1

∑
s:τ

k (q)
s =i

γqs(x, t) .

Therefore, for any I,
∫ T

0
uI(x) is a sum of terms of the form∫ T

0

∫ t|I|

0

. . .

∫ t2

0

γ
q|I|
s|I| (x, t|I|) . . . γ

q1
s1

(x, t1) dt1 . . . dt|I| , (69)

for some multi-indices (q1, . . . , q|I|), and (s1, . . . , s|I|). From Lemma 3, we only need to consider the case where

q1 = . . . = q|I|
∆
= q and (s1, . . . , s|I|) = (σ(1), . . . , σ(|I|)) with |I| = S(q), since otherwise the expression in (69)

is known to be a o(x). In this case (69) rewrites as

S(q)∏
i=1

vqi (x)

∫ T

0

∫ tS(q)

0

. . .

∫ t2

0

αqsS(q)
. . . αqs1 dt1 . . . dtS(q)

=
∑

j:Bj∈Pk (q)

µqjaj(x)

∫ T

0

∫ tS(q)

0

. . .

∫ t2

0

αqsS(q)
. . . αqs1 dt1 . . . dtS(q) .

(70)

Since a is a linear map, each iterated integral is a O(x) so that Assumption 3 is verified. This concludes the
proof of part i).

Finally, the proof of ii) comes from that, in the f.l.a. case (33) is also true for the perturbed system (Sε).
Therefore, repeating the proof above with the perturbed system (68) becomes

x(T ) = x0 +
K∑
k=1

C(j)∑
c=1

∑
I = (τkσ(1), . . . , τ

k
σ(l(k)))

σ ∈ S(l(k))

((f + h(ε, .))I id)(x0)

∫ T

0

αk,cI vk,cI (x0) + o(x0)

= x0 + T F̃ε(x0)a(x0) + o(x0)

= (In + F̃ε(0)G)x0 + o(x0) ,



26 P. MORIN AND C. SAMSON

and ii) follows. There only remains to prove Lemmas 2 and 3.

Proof of Lemma 2. Each sine or cosine function αj is first decomposed into the sum of two exponential
functions

αj(t) = η1
j e
iωjt + η−1

j e−iωjt. (71)

For instance, if αj(t) = cos(ωjt) then η1
j = η−1

j = 1
2 , and if αj(t) = sin(ωjt) then η1

j = −η−1
j = 1

2i . Note that in

any case we have (η1
j )

2 = (η−1
j )2. The proof of Lemma 2 is based on the following claim.

Claim 1. Let (sJ , . . . , sJ−r), with r ∈ {1, . . . , J − 1}, denote an element in the set Sr+1 = {−1, 1}r+1, if
r∑
j=0

sJ−jωJ−j = 0 then
r∏
j=0

η
sJ−j
J−j + (−1)r

r∏
j=0

η
−sJ−j
J−j = 0.

In order to prove this claim, let {ωlm}, with lm ∈ {J − r, . . . , J} and m ∈ {0, . . . , r̄(≤ r)}, denote the
set of different frequencies involved in the set {ωJ−r, . . . , ωJ}, and define plm as the number of frequencies in

{ωJ−r, . . . , ωJ} equal to ωlm (⇒
r̄∑

m=0
plm = r + 1). Then

r∑
j=0

sJ−jωJ−j =
r̄∑

m=0

λlmωlm ,

with λlm =
∑
j:ωJ−j=ωlm

sJ−j , and also, since sJ−j = ±1,∑
m

|λlm | ≤
∑
m

plm ≤ J ≤Maxk∈{1,... ,K}l(k).

Moreover

r∏
j=0

η
sJ−j
J−j + (−1)r

r∏
j=0

η
−sJ−j
J−j =

r̄∏
m=0

(η
slm
lm

)plm + (−1)
(
r̄∑

m=0
plm−1)

r̄∏
m=0

(η
−slm
lm

)plm . (72)

Now, since
∑
m
|λlm | ≤ Maxk∈{1,... ,K}l(k), one deduces from the assumption in Lemma 2 and by using the

independence of the M.C. sets Ωk,c, that the equality
r̄∑

m=0
λlmωlm = 0 implies that λlm = 0, ∀m ∈ {0, . . . , r̄}.

Indeed, if some λlm were different of zero then the set {ωJ−r, . . . , ωJ} would have to contain either the M.C.
set Ωk,c to which ωlm belongs, or more than l(k) terms belonging to Ωk,c. The fact that λlm = 0 in turn implies

that the number plm of frequencies equal to ωlm is even. Therefore, (η
slm
lm

)plm = (η
−slm
lm

)plm ,
r̄∑

m=0
plm is even,

and (−1)

(
r̄∑

m=0
plm−1

)
= −1. It is then clear that the right member of (72) is equal to zero.

Having proved Claim 1, let us return to the proof of Lemma 2. Clearly, Fα1(T ) = 0. Let us proceed by
induction and show that if Fα1,... ,αj (T ) = 0, for j ∈ {1, . . . , J − 1} then Fα1,... ,αJ (T ) = 0. By definition of the
function Fα1,... ,αJ

Fα1,... ,αJ (T ) =

∫ T

0

αJ(t)Fα1,... ,αJ−1(t)dt

=

∫ T

0

( ∑
sJ∈S1

ηsJJ eisJωJ t

)
Fα1,... ,αJ−1(t)dt.
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Integration by parts of the above integral, using the assumption that Fα1,... ,αJ−1(T ) = 0 and the fact that
d
dt
Fα1,... ,αJ−1 = αJ−1(t)Fα1,... ,αJ−2 , yields

Fα1,... ,αJ (T ) = −

∫ T

0

 ∑
(sJ ,sJ−1)∈S2

ηsJJ η
sJ−1

J−1 e
i(sJωJ+sJ−1ωJ−1)t

isJωJ

Fα1,... ,αJ−2(t)dt.

Using Claim 1 and the symmetry of S2, the above equality may also be written as

Fα1,... ,αJ (T ) = −

∫ T

0


∑

(sJ , sJ−1) ∈ S2

sJωJ + sJ−1ωJ−1 6= 0

ηsJJ η
sJ−1

J−1 e
i(sJωJ+sJ−1ωJ−1)t

isJωJ

Fα1,... ,αJ−2(t)dt.

This process of integration by parts can be continued until the integrand in the right member of the equality
does not contain any function Fα1,... ,αj . Each time Claim 1 and the symmetry of the sets Sj are invoked to
discard the contribution of frequency combinations which are equal to zero. We finally obtain in this way

Fα1,... ,αJ (T ) = (−1)J−1

∫ T

0

∑
(sJ , . . . , s1) ∈ SJ

r∑
j=0

sJ−rωJ−r 6= 0, r ∈ {0, . . . , J − 1}

ηsJJ . . . ηs11 e
i(sJωJ+...+s1ω1)t

iJ−1
J−2∏
r=0

(
r∑
j=0

sJ−jωJ−j)

·

Since the integrand is the sum of terms whose integrals over [0, T ] are clearly equal to zero, we thus have shown
that Fω1,... ,ωJ (T ) = 0, and the proof is complete.

Proof of Lemma 3. From the definition of γqs in (64), the iterated integral (67) may also be written as

vqisi (x0) . . . vq1s1 (x0)

∫ T

0

∫ ti

0

. . .

∫ t2

0

αqisi(ti) . . . α
q1
s1(t1) dt1 . . . dti. (73)

Let us first consider the situation when some of the qj ’s (j ∈ {1, . . . , i}) are not equal. Then the set
{ωq1s1 , . . . , ω

qi
si
} either contains for each (k, c) less than l(k) terms belonging to Ωk,c, or contains for some (k, c) at

least l(k) terms belonging to Ωk,c. In the first case, the integral (73) is equal to zero by application of Lemma 2,
so that it is also a o(x0). In the second case, the set {vqisi (x0), . . . , vq1s1 (x0)} contains l(k) terms, each of them a

O(|x0|
1
l(k) ) as imposed in Step 7 of the algorithm, plus additional terms (at least one), each of them a O(|x0|β)

for some β > 0. Therefore, the product vqisi (x0) . . . vq1s1 (x0) is again a o(x0).
Let us now consider the case when all qj ’s are equal (to q) and (s1, . . . , si) 6= (σ(1), . . . , σ(S(q)), ∀σ ∈

S(S(q)). The equality of the qj ’s implies that all frequencies ωqsj belong to a unique M.C. set Ωk,c. The latter

inequality implies that the set {ωqs1 , . . . , ω
q
si
} does not coincide with Ωk,c. Therefore, if i ≤ l(k), then this set

does not contain Ωk,c and, by application of Lemma 2, the iterated integral in (73) is zero. If i > l(k), then

the product vqsi(x0) . . . vqs1(x0) is, in view of the condition imposed in Step 7 of the algorithm, a O(|x0|
i
l(k) ), and

thus a o(x0). This concludes the proof of Lemma 3, and the proof of Theorem 2 is now complete.

Proof of Theorem 3

Assumptions 1 and 3 of Theorem 1 are obviously verified for the system (35), since they only involve the
control law and do not depend on the control system. Hence, we only need to take care of Assumption 2 and
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show that the solution of

ż =
m∑
i=1

(bi(z) + gi(z))ui(z0, t) , z(t0) = z0 , (74)

satisfies

z(T ) = Āz0 + o(z0) (75)

for some discrete-stable matrix Ā. Let us first introduce some notations. Without loss of generality, we assume
that the variables zi are ordered by increasing weight, i.e.

r1 ≤ r2 ≤ . . . ≤ rn

and decompose z as z = (z1, . . . , zP ), where each zp (1 ≤ p ≤ P ) is the sub-vector of z whose components have
same weight rp (r1 ≤ rp ≤ rn) with

r1 = r1 < r2 < . . . < rP = rn .

In a similar way, a map f from Rn to Rn can be decomposed as f = (f1, . . . , fP ).
We may now proceed with the proof. The solution of (74) can be expanded as

z(t) = z0 +
∑
I

((b+ g)I id)(z0)

∫ t

0

uI(z0) .

By Proposition 1, the series in the right-hand side of this equality is uniformly convergent w.r.t. z0 (|z0| ≤ δ)
and t ∈ [0, T ]. The above expression may be rewritten as

z(t) = z0 +
∑
I

(bI id)(z0)

∫ t

0

uI(z0) +
∑
I

(dgI id)(z0)

∫ t

0

uI(z0) . (76)

Here, dgI
∆
= dgi1 · · · d

g
ik

(for I = (i1, . . . , ik)), where each dgi belongs to {bi, gi}, and the product dgI contains at
least one of the gi’s. Note that the first sum in the right-hand side involves a finite number of terms because
{b1, . . . , bm} is a nilpotent set of vector fields. As a consequence, the series defined by the second sum is
uniformly convergent w.r.t. z0 and t. Each of these two sums is now considered separately.

Since Assumption 2 in Theorem 1 is verified for the approximating system (34), we have

z0 +
∑
I

(bI id)(z0)

∫ T

0

uI(z0) = Az0 + o(z0) . (77)

where A is a discrete-stable matrix. We claim that the matrix A is necessarily block upper-triangular in the
sense that

Az0 =

A11 ? ?
. . . ?

0 APP


z

1
0
...
zP0

 · (78)

In order to prove this assertion, it is clearly sufficient to show that, for p = 1, . . . , P ,∑
I

(bI id)p(z0)

∫ T

0

uI(z0) =
∑
q≥p

Ãp,qz
q
0 + o(z0) (79)
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for some matrices Ãp,q. Let us rewrite the sum in the left-hand side of (79) as

∑
‖I‖<rp , |I|≤ 1

α

(bI id)p
∫ T

0

uI +
∑

‖I‖≥rp , |I|≤ 1
α

(bI id)p
∫ T

0

uI +
∑
|I|> 1

α

(bI id)p
∫ T

0

uI (80)

where the argument z0 is omitted for the sake of conciseness.

We first note that the last sum in (80) is a o(z0) because, from Assumption 1, each
∫ T

0
uI is itself a o(z0)

when |I| > 1/α.
From Assumption 3-bis in Theorem 3, all iterated integrals in the second sum are of the form∑

k:rk≥rp

aI,kz0,k + o(z0)

which may also be written as ∑
p≤q≤P

ãI,qz
q
0 + o(z0)

since any z0,k whose weight rk is greater or equal to rp has to be an element of some zq0 with q ≥ p. This clearly
implies that the second sum in (80) can be written as the right-hand side of (79).

Let us finally consider the first sum in (80). Since (bI id)p(z0) is just bIz
p evaluated at z0, and since

each component of zp is homogeneous of degree rp, it follows that each component of (bI id)p is a function
homogeneous of positive degree rp−‖I‖. Therefore, each (bI id)p vanishes at the origin and, since it is a smooth
function, there exists KI > 0 such that |(bI id)p(z0)| ≤ KI |z0|. This inequality, combined with Assumption 3

which tells us that
∫ T

0
uI(z0) = O(z0), implies that the first sum in (80) is a o(z0). Therefore, relation (79)

holds for every p = 1, . . . , P and, subsequently, the matrix A is block upper-triangular. Moreover, A being a
discrete-stable matrix, each matrix App on the block diagonal is necessarily a discrete-stable matrix itself.

Let us now show that

∑
I

(dgI id)(z0)

∫ T

0

uI(z0) = Cz0 + o(z0) , (81)

where C is a block upper-triangular matrix with zeroes on the block diagonal, i.e.

Cz0 =

0 ? ?
...

. . . ?
0 · · · 0


z

1
0
...
zP0

+ o(z0) . (82)

To this purpose, we just need to show that, for p = 1, . . . , P ,

∑
I

(dgI id)p(z0)

∫ T

0

uI(z0) =
∑
q>p

Cp,qz
q
0 + o(z0) (83)

for some matrices Cp,q. Let us again decompose the sum in the left-hand side of (83) as

∑
‖I‖≤rp,|I|≤1/α

(dgI id)p
∫ T

0

uI +
∑

‖I‖>rp,|I|≤1/α

(dgI id)p
∫ T

0

uI +
∑
|I|>1/α

(dgI id)p
∫ T

0

uI . (84)
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We start with the third sum in (84), and define

ũi(z0, t)
∆
=
ui(z0, t)

|z0|α−σ
(i = 1, . . . ,m)

with σ > 0 small enough so that, by Assumption 1 of Theorem 1, ũi is continuous. Then,

∑
|I|>1/α

(dgI id)p(z0)

∫ T

0

uI(z0) =
∑
|I|>1/α

|z0|
|I|(α−σ)(dgI id)(z0)

∫ T

0

ũI(z0) .

Choosing σ small enough such that the inequality |I|(α−σ) ≥ 1 +µ0 > 1 holds for every I such that |I| > 1/α,
and using the fact that, from Proposition 1, the series

∑
|I|>1/α

(dgI id)(z0)

∫ T

0

ũI(z0)

is uniformly absolutely convergent for z0 small enough, we obtain (provided that |z0| < 1)∣∣∣∣∣∣
∑
|I|>1/α

(dgI id)p(z0)

∫ T

0

uI(z0)

∣∣∣∣∣∣ ≤ |z0|
1+µ0 S(z0) (85)

with S a continuous function. This establishes that the third sum in (84) is a o(z0).
Let us now consider the second sum in (84). From Assumption 3-bis, and as pointed out before in the proof

(with the only difference that ||I|| is now taken strictly greater than rp), all iterated integrals in this sum are of
the form ∑

q>p

ãI,qz
q
0 + o(z0) .

This implies that the second sum in (84) can be written as the right-hand side of (83).
Let us finally consider the first sum in (84). By definition of the product dgI , there is at least one term in

this product which belongs to {g1, . . . , gm}. Now, since gi,j = o(ρrj+di), for j = 1, . . . , n (relation (36)), the
Taylor expansion of gi at the origin gives a sum of vector fields homogeneous of degree strictly larger than di.
This in turn implies that each dgI is a sum of differential operators of degree strictly larger than −‖I‖, and that
every component of (dgI id)p is a sum of homogeneous functions of degree strictly larger than (rp − ‖I‖). Since
(rp − ‖I‖) ≥ 0, this degree is thus strictly positive. Therefore, every (dgI id)p vanishes at the origin and, since
it is also a smooth function, there exists KI > 0 such that |(dgI id)p(z0)| ≤ KI |z0|. This inequality, combined

with Assumption 1 which implies that
∣∣∣∫ T0 uI(z0)

∣∣∣ tends to zero when z0 tends to zero, implies that the first

sum in (84) is a o(z0). We have thus proved that (83) holds for any p = 1, . . . , P , and, subsequently, that
relations (81) and (82) also hold. It follows from (76), (77), and (81) that relation (75) is true with Ā = A+C,
a discrete-stable matrix. Therefore Assumption 2 is verified for the system (35), and this concludes the proof
of Theorem 3.

Proof of Theorem 4

We give the proof for ω = 1 (⇒ T = 2π)—any other value of ω being taken care of by introducing the
time-scaling t 7−→ ωt. Throughout the proof, the control vector fields associated with the chained system (39)
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are denoted as b1 and b2, i.e.

b1(x) = (1, 0, x2, . . . , xn−1)′

b2(x) = (0, 1, 0, . . . , 0)′ .

For any q > 0, and corresponding dilation δr(q) such that r(q) = (1, q, q + 1, . . . , q + n − 2), the v.f. b1 and
b2 are δr(q)-homogeneous of degree −1 and −q respectively. In view of (40), u1(x, t) and u2(x, t) are δr(q)-
homogeneous of degree 1 and q respectively. Therefore, since q is positive, Assumption 1 of Theorem 1 is
verified with α = 1

maxi ri(q)
= 1

q+n−2 ·

Let us now check that Assumption 2 is verified. The solution x(.) of (17) on the time-interval [0, T ] is given
by

x(t) = x0 +
∑
I

(bI id)(x0)

∫ t

0

uI(x0) (t ∈ [0, T ]) . (86)

It is simple to show by induction that

(b1 · · · b1︸ ︷︷ ︸
k

id)(x) = (0, . . . , 0, x2, . . . , xn−k)′ (k ≥ 2) , (87)

which implies

(b2 b1 · · · b1︸ ︷︷ ︸
k

id)(x) = (0, . . . , 0︸ ︷︷ ︸
k+1

, 1, 0, . . . , 0)′ (k ≥ 1) , (88)

and, subsequently

(bib2b1 · · · b1id) ≡ 0 ∀i = 1, 2 .

Hence, the only multi-indices for which bI id is not identically zero are those of the form I = (1, . . . , 1) or
I = (2, 1, . . . , 1), and one obtains from (86, 87, 88),

x(T ) = x0 +
n−2∑
k=1

b1 · · · b1︸ ︷︷ ︸
k

id

 (x0)

∫ T

0

u(1,... ,1)(x0) +
n−2∑
k=0

b2 b1 · · · b1︸ ︷︷ ︸
k

id

 (x0)

∫ T

0

u(2,1,... ,1)(x0)

= x0 + b1(x0)

∫ T

0

u1(x0) +
n−2∑
k=0

b2 b1 · · · b1︸ ︷︷ ︸
k

id

 (x0)

∫ T

0

u(2,1,... ,1)(x0) + o(x0)

= x0 +



1 0 0 . . . 0

0 1 0 . . .
...

x0,2 0 1
...

...
...

. . .
. . .

...
x0,n−2 0 . . . 0 1





∫ T
0
u1(x0)∫ T

0
u2(x0)∫ T

0
u(2,1)(x0)

...∫ T
0
u(2,1,... ,1)(x0)

+ o(x0).

(89)
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Therefore

x(T ) = x0 +



∫ T
0
u1(x0)∫ T

0
u2(x0)∫ T

0
u(2,1)(x0)

...∫ T
0
u(2,1,... ,1)(x0)

+ o(x0) . (90)

Let us now calculate the iterated integral involved in the right-hand side of equality (90). First, we have∫ T

0

u1(x0) = (k1 − 1)x0,1 ,

∫ T

0

u2(x0) = (k2 − 1)x0,2 . (91)

Calculation of the other integrals makes use of the following lemma.

Lemma 4. For any k and i in N− {0}, and any p ∈ {1, . . . , k},∫ 2π

0

∫ tk+1

0

· · ·

∫ t2

0

sin tk+1 · · · sin t1 dt1 · · · dtk+1 = 0∫ 2π

0

∫ tk+1

0

· · ·

∫ t2

0

sin tk+1 · · · sin tp+1 cos itp sin tp−1 · · · sin t1 dt1 · · · dtk+1 =

{
0 if i > k
2π

2kk! if i = k and p = 1 .
(92)

The proof of this lemma is given at the end of this section.

From (40) ∫ T

0

u2, 1, . . . , 1︸ ︷︷ ︸
k+1


(x0) =

n∑
i=3

2i−2(i− 2)!

T

(ki − 1)x0,i

ρ
i−(k+2)
q (x0)

∫ T

0

∫ tk+1

0

· · ·

∫ t2

0

sin tk+1 · · ·

sin t2 cos(i− 2)t1 dt1 . . . dtk+1 + o(x0).

Using the fact that ρq(x) = O(|x|
1

q+n−2 )∫ T

0

u2, 1, . . . , 1︸ ︷︷ ︸
k+1


(x0) =

n∑
i=k+2

2i−2(i− 2)!

T

(ki − 1)x0,i

ρ
i−(k+2)
q (x0)

∫ T

0

∫ tk+1

0

· · ·

∫ t2

0

sin tk+1 · · ·

sin t2 cos(i− 2)t1 dt1 . . . dtk+1 + o(x0)

and, by application of Lemma 4,∫ T

0

u2, 1, . . . , 1︸ ︷︷ ︸
k+1


(x0) = (kk+2 − 1)x0,k+2 + o(x0) . (93)

Using (91) and (93) in (90), we obtain

x(T ) = Ax0 + o(x0) (94)
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with A = diag{k1, k2, . . . , kn}, a discrete-stable matrix since ki ∈ (−1, 1) (i = 1, . . . , n).
There remains to show that Assumptions 3 of Theorem 1 and 3-bis of Theorem 3 are verified. It is in fact

sufficient to show that the stronger latter assumption holds. To this purpose, we must show that (38) holds for
every possible I (recall that d1 = deg(b1) = −1, and d2 = deg(b2) = −q).

Let us first consider the case where I = (1, . . . , 1). If |I| = 1, then∫ T

0

uI(x) =

∫ T

0

u1(x) = (k1 − 1)x1

and (38) obviously holds. If |I| > 1, then∫ T

0

uI(x) = ρ|I|q (x)

∫ T

0

∫ t|I|

0

. . .

∫ t2

0

sin t|I| . . . sin t1 dt|I| . . . dt1 + o(x)

= o(x) ,

where the last equality results from Lemma 4. Therefore, (38) holds for every I which does not contain the
index 2.

Assume now that I contains the index 2 twice at least. If I = (2, 2), then a simple calculation yields∫ T

0

uI(x) = o(x) . (95)

If |I| > 2, the iterated integral is δr(q)-homogeneous of degree strictly larger than 2q. Since q ≥ n− 2 (see (41))
and ri(q) ≤ q + n − 2 (i = 1, . . . , n), this degree is larger than the degree of homogeneity of each xi, so that
(95) also holds in this case.

Let us finally consider the case where I contains the index 2 exactly once.
If I = (2, 1, . . . , 1), the satisfaction of (38) follows from (93).
If the index 2 is not in the first entry, i.e. I is of the form1, . . . , 1︸ ︷︷ ︸

p

, 2, 1, . . . , 1︸ ︷︷ ︸
k−p

 (p > 0) ,

then ‖I‖ = k + q and

∫ T

0

uI(x) =
n∑
i=3

2i−2(i− 2)!

T

(ki − 1)xi

ρ
i−(k+2)
q (x)

∫ T

0

∫ tk+1

0

. . .

∫ t2

0

sin tk+1 . . . sin tp+2 cos(i− 2)tp+1

sin tp . . . sin t1 dtk+1 . . . dt1 + o(x)

=
n∑

i=k+2

2i−2(i− 2)!

T

(ki − 1)xi

ρ
i−(k+2)
q

∫ T

0

∫ tk+1

0

. . .

∫ t2

0

sin tk+1 . . . sin tp+2 cos(i− 2)tp+1

sin tp . . . sin t1 dtk+1 . . . dt1 + o(x)

= (kk+2 − 1)xk+2

∫ T

0

∫ tk+1

0

. . .

∫ t2

0

sin tk+1 . . . sin tp+2 cos(i− 2)tp+1

sin tp . . . sin t1 dtk+1 . . . dt1 + o(x)

+
n∑

i=k+3

2i−2(i− 2)!

T

(ki − 1)xi

ρ
i−(k+2)
q (x)

∫ T

0

∫ tk+1

0

. . .

∫ t2

0

sin tk+1 . . . sin tp+2 cos(i− 2)tp+1

sin tp . . . sin t1 dtk+1 . . . dt1 + o(x).
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Since the weight of xk+2 is equal to k + q (=‖I‖), the first term in the right-hand side of the last equality is
one of the linear terms involved in the right-hand side of relation (38), whereas all other iterated integrals are
equal to zero by application of Lemma 4.

We have thus shown that relation (38) holds for every possible I, and this concludes the proof of
Theorem 4. There only remains to prove Lemma 4.

Proof of Lemma 4. We shall use the following relation, the proof of which is easily worked out by induction
on k: ∫ t

0

∫ tk

0

. . .

∫ t2

0

sin tk . . . sin t1 dt1 . . . dtk =
k∑
j=1

ck,j(1− cos jt), ck,k =
(−1)k−1

2k−1k!
· (96)

From this, we readily obtain the first equation in (92). We also deduce that (recall that T = 2π),

∫ T

0

∫ tk+1

0

. . .

∫ t2

0

cos itk+1 sin tk . . . sin t1 dt1 . . . dtk+1 =

{
0 if i > k

(−1)k

2kk!
T if i = k .

(97)

Now, we claim that for any i ≥ k,∫ T

0

∫ tk+1

0

. . .

∫ t2

0

sin tk+1 . . . sin t2 cos it1 dt1 . . . dtk+1

= (−1)k
∫ T

0

∫ tk+1

0

. . .

∫ t2

0

cos itk+1 sin tk . . . sin t1 dt1 . . . dtk+1 .

(98)

To show this, we view the first integral as a multiple integral on Rk+1 (on the domain
{(t1, . . . , tk+1) ∈ Rk+1: 0 ≤ t1 ≤ . . . ≤ tk+1 ≤ T}, to be more precise) so that this integral can also be
written as ∫ T

0

∫ T

t1

. . .

∫ T

tk

cos it1 sin t2 . . . sin tk+1 dt1 . . . dtk+1 .

Setting τi
∆
= tk+2−i (i = 1, . . . , k + 1), this gives∫ T

0

∫ T

τk+1

. . .

∫ T

τ2

cos iτk+1 sin τk . . . sin τ1 dτ1 . . . dτk+1

=

∫ T

0

(∫ T

0

−

∫ τk+1

0

)
. . .

(∫ T

0

−

∫ τ2

0

)
cos iτk+1 sin τk . . . sin τ1 dτ1 . . . dτk+1 .

Using (96), this last term simplifies into

(−1)k
∫ T

0

∫ τk+1

0

. . .

∫ τ2

0

cos iτk+1 sin τk . . . sin τ1 dτ1 . . . dτk+1 ,

and (98) follows. Finally (92) follows directly from (97) and (98). The proof of this lemma is now complete.
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[20] C. Samson, Velocity and torque feedback control of a nonholonomic cart, in Int. Workshop in Adaptative and Nonlinear

Control: Issues in Robotics. LNCIS, Vol. 162, Springer Verlag, 1991 (1990).
[21] O.J. Sørdalen and O. Egeland, Exponential stabilization of nonholonomic chained systems. IEEE Trans. Automat. Contr. 40

(1995) 35–49.
[22] G. Stefani, Polynomial approximations to control systems and local controllability, in IEEE Conf. on Decision and Control

(CDC) (1985) 33–38.
[23] G. Stefani, On the local controllability of scalar-input control systems, in Theory and Applications of Nonlinear Control

Systems, Proc. of MTNS’84, C.I. Byrnes and A. Linsquist Eds., North-Holland (1986) 167–179.
[24] H.J. Sussmann and W. Liu, Limits of highly oscillatory controls ans approximation of general paths by admissible trajectories,

in IEEE Conf. on Decision and Control (CDC) (1991) 437–442.
[25] H.J. Sussmann, Lie brackets and local controllability: a sufficient condition for scalar-input systems. SIAM J. Contr. Opt. 21

(1983) 686–713.
[26] H.J. Sussmann, A general theorem on local controllability. SIAM J. Contr. Opt. 25 (1987) 158–194.


