@article{COCV_1999__4__405_0, author = {Ivanov, Sergei}, title = {Control norms for large control times}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {405--418}, publisher = {EDP-Sciences}, volume = {4}, year = {1999}, mrnumber = {1693908}, zbl = {1060.93504}, language = {en}, url = {http://archive.numdam.org/item/COCV_1999__4__405_0/} }
Ivanov, Sergei. Control norms for large control times. ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999), pp. 405-418. http://archive.numdam.org/item/COCV_1999__4__405_0/
[1] Geometrical aspects of exact boundary controllability for the wave equation - a numerical study. ESAIM: Contr., Optim. Cal. Var. 3 ( 1998) 163-212. | Numdam | MR | Zbl
and ,[2] Families of Exponentials. The Method od Moments in Controllability Problems for Distributed Parameter systemsCambridge University Press, N.Y. ( 1995). | MR | Zbl
and ,[3] Controllability in filled domain for the multidimensional wave equation with singular boundary control. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 210 ( 1994) 7-21. | MR | Zbl
, and ,[4] Exponential bases in Sobolev spaces in control and observation problems for the wave equation. Proc. Roy. Soc. Edinburgh (to be submitted). | Zbl
, and ,[5] Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Theor. Appl. 30 ( 1992) 1024-1095. | MR | Zbl
, and ,[6] Estimates for sequences biorthogonal to certain complex exponentials and boundary control of the wave equation, Springer, Lecture Notes in Control and Information Sciences 2 ( 1979). | MR | Zbl
,[7] A numerical approach to the exact controllability of the wave equation. (I) Dirichlet controls: description of the numerical methods. Japan J. Appl. Math. 7 ( 1990) 1-76. | MR | Zbl
, and ,[8] Regularity of the minimum time function and minimum energy problems: the linear case. SIAM J. Control Optim. (to appear). | MR | Zbl
and ,[9] On Moment Theory and Controllability of one-dimensional vibrating Systems and Heating Processes, Springer, Lecture Notes in Control and Information Sciences 173 ( 1992). | MR | Zbl
,[10] On boundary controllability of a vibrating plate. Appl. Math. Optim. 13 ( 1985) 205-229. | MR | Zbl
, and ,[11] Nonhomogeneous boundary value problems for second order hyperbolic operators. J. Math. Pures Appl. 65 ( 1986) 149-192. | MR | Zbl
, and ,[12] Contrôviabilité exacte, stabilisation et perturbation des systèmes distribués, Masson, Paris Collection RMA 1 ( 1988).
,[13] A Treatise on the Shift Operator, Springer, Berlin ( 1986). | MR
,[14] Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions. SIAM Rev. 20 ( 1978) 639-739. | MR | Zbl
,[15] The coefficient map for certain exponential sums. Nederl. Akad. Wetensch. Proc. Ser. A 89 (= Indag. Math. 48) ( 1986) 463-468. | MR | Zbl
,[16] The "window problem" for complex exponentials. Fourier Analysis and Applications (to appear). | Zbl
, and ,[17] Unique continuation for solutions of PDE's; between Hörmander's theorem and Holmgren's theorem. Comm. PDE 20 ( 1995) 855-884. | MR | Zbl
,