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PATCHY VECTOR FIELDS AND ASYMPTOTIC STABILIZATION

Fabio Ancona
1

and Alberto Bressan
2

Abstract. This paper is concerned with the structure of asymptotically stabilizing feedbacks for a
nonlinear control system on Rn. We first introduce a family of discontinuous, piecewise smooth vector
fields and derive a number of properties enjoyed by solutions of the corresponding O.D.E’s. We then
define a class of “patchy feedbacks” which are obtained by patching together a locally finite family of
smooth controls. Our main result shows that, if a system is asymptotically controllable at the origin,
then it can be stabilized by a piecewise constant patchy feedback control.

Résumé. Dans cet article, on considère la structure de lois de feedback qui stabilisent asymptotique-
ment un système de contrôle non linéaire. Nous étudions une famille de champs de vecteurs discontinus,
réguliers par morceaux, et démontrons de nombreuses propriétés satisfaites par les équations différen-
tielles ordinaires correspondantes. En outre, nous définissons une classe de “feedbacks rapiécés” qui
sont obtenus par la superposition d’une famille localement finie de contrôles réguliers. Notre résultat
principal montre que, si le système est asymptotiquement contrôlable à l’origine, alors il peut être
stabilisé par un “feedback rapiécé”, constant par morceaux.
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1. Introduction

Consider the control system on Rn

ẋ = f(x, u) u(t) ∈ K, (1.1)

assuming that control set K ⊂ Rm is compact and that the map f : Rn × Rm 7→ Rn is smooth. We are
concerned with the classical problem of finding a feedback control u = U(x) ∈ K such that all trajectories of
the corresponding O.D.E.

ẋ = f
(
x, U(x)

)
(1.2)

tend to the origin as t→∞.
Assume that, for every initial data x̄ ∈ Rn, there exists an open loop control u = u(t, x̄) such that the

solution of
ẋ = f

(
x, u(t, x̄)

)
, x(0) = x̄ (1.3)
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asymptotically tends to the origin. If the system is nonlinear, it is well known that there may not be any
continuous feedback which asymptotically steers to the origin every point x̄ ∈ Rn. Indeed, the possible nonex-
istence of such feedbacks was first brought to light in [28] for a two-dimensional system (n = 2, K = R2), and
in [23] for one-dimensional systems (n = 1, K = R). General results, regarding multidimensional systems,
were presented in [3, 9, 28], where certain topological obstructions that can prevent the existence of continuous
stabilizing feedback were discovered.

It is thus natural to look for a stabilizing control within a class of discontinuous functions. The pioneer
work in this direction was [28], where it was shown that any controllable analytic system can be asymptotically
stabilized by means of piecewise analytic feedback laws, if one prescribes suitable “exit rules” (that cannot be
expressed in terms of a true feedback) on the singular set of the feedback controls. However, allowing nonregular
feedbacks, immediately leads to a major theoretical difficulty. Namely, when the function U is discontinuous, the
differential equation (1.2) may not have any solution. To overcome this problem, two approaches are possible.

1. On one hand, one can choose to work with arbitrary feedback controls u = U(x). In this case, there
is no guarantee that (1.2) will have any solution in the usual Carathéodory sense. Therefore, one must
introduce some new definition of “generalized solution” of an O.D.E. with arbitrary measurable right hand
side and show that, with this definition, stabilizing trajectories always exist.

2. On the other hand, one can single out a family of discontinuous feedbacks whose singularities are sufficiently
tame, so that the corresponding differential equation (1.2) always admits Carathéodory solutions. One
then has to prove that a stabilizing feedback exists within this particular class of functions.

The first approach was taken in [4], considering a family of approximate solutions obtained by “sampling” the
feedback control at discrete times, then applying a constant control between two consecutive sampling times and
thus constructing an approximate solution of the corresponding O.D.E. The existence of a stabilizing feedback in
this generalized sense is the main result in [4], where the regularity of the feedback was not a matter of concern.
It is remarkable that the definitions of Filippov or Krasovskii generalized solutions, frequently encountered in
the literature, cannot be used here. Indeed, for a given initial data, these generalized solutions form a closed and
connected set. The same topological obstructions to the existence of a continuous feedback are thus encountered
in this case [10,22].

In the present paper, we follow the second approach. First we introduce a particular class of discontinuous
vector fields. These are called “patchy” because they are obtained by patching together smooth vector fields
defined on a locally finite family of positively invariant regions. The analysis of differential equations with
patchy right hand side reveals many nice properties. If g is a patchy vector field, for any initial data x̄ the
Cauchy problem

ẋ = g(x), x(0) = x̄ (1.4)

has at least one forward solution and at most one backward solution, in the Carathéodory sense. These solutions
are not only absolutely continuous, but in fact piecewise C1. Moreover, the set of all solutions is closed in the
topology of uniform convergence, but possibly not connected. For patchy vector fields, any generalized solution
obtained as a limit of the approximate solutions considered in [4] is a Carathéodory solution as well.

We then define a “patchy feedback” as a piecewise constant feedback control U such that g(x)
.
= f

(
x, U(x)

)
determines a patchy vector field. Our main theorem shows that, if the system (1.1) is asymptotically controllable
to the origin, then it can be stabilized by a patchy feedback. This provides an alternative proof of the result
in [4] which is conceptually simpler. Indeed, the construction of the stabilizing feedback here is completely
independent from the existence of a control-Lyapunov functional for (1.1). On the other hand, it achieves a
feedback control with better regularity properties.

2. Basic notations and definitions

In the following, by B(x, r) we denote the closed ball centered at x with radius r. The closure, the interior

and the boundary of a set Ω are written as Ω,
◦
Ω and ∂Ω, respectively.
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Definition 2.1. Let Ω ⊂ Rn be an open domain with smooth boundary ∂ Ω. We say that a smooth vector field
g defined on a neighborhood of Ω is an inward-pointing vector field on Ω if at every boundary point x ∈ ∂Ω
the inner product of g with the outer normal n satisfies〈

g(x), n(x)
〉
< 0. (2.1)

The pair
(
Ω, g

)
will be called a patch.

A vector field on Ω ⊂ Rn defined as the superposition of inward-pointing vector fields will be called a patchy
vector field. More precisely:

Definition 2.2. We say that g : Ω 7→ Rn is a patchy vector field if there exists a family of patches
{

(Ωα, gα) :

α ∈ A
}

such that

- A is a totally ordered index set,
- the open sets Ωα form a locally finite covering of Ω,
- the vector field g can be written in the form

g(x) = gα(x) if x ∈ Ωα \
⋃
β>α

Ωβ . (2.2)

We shall occasionally adopt the longer notation
(
Ω, g, (Ωα, gα)

α∈A

)
to indicate a patchy vector field, specifying

both the domain and the single patches. By defining

α∗(x)
.
= max

{
α ∈ A : x ∈ Ωα

}
, (2.3)

we thus have the equivalent definition

g(x) = g
α∗(x)

(x) ∀ x ∈ Ω.

Remark 2.1. Of course, the patches (Ωα, gα) are not uniquely determined by the patchy vector field g.
Indeed, whenever α < β, by (2.2) the values of gα on the set Ωα ∩ Ωβ are irrelevant. In the construction of
patchy vector fields, the following observation is often useful. Assume that the open sets Ωα form a locally finite
covering of Ω and that, for each α ∈ A, the vector field gα satisfies (2.1) at every point x ∈ ∂Ωα \

⋃
β>αΩβ .

Then g is again a patchy vector field. To see this, it suffices to construct vector fields g̃α which satisfy the
inward pointing property (2.1) at every point x ∈ ∂Ωα and such that g̃α = gα on Ωα \

⋃
β>α Ωβ . To accomplish

this, for each α we first consider a smooth vector field vα such that vα(x) = −n(x) on ∂Ωα. Then we construct
a smooth scalar function ϕα : Ω 7→ [0, 1] such that

ϕα(x) =

{
1 if x ∈ Ωα \

⋃
β>αΩβ ,

0 if x ∈ ∂Ωα,
〈
g(x), n(x)

〉
≥ 0.

Finally, for each α ∈ A we define the interpolation

g̃α(x)
.
= ϕα(x)gα(x) +

(
1− ϕα(x)

)
vα(x).

The vector fields g̃α thus defined satisfy our requirements.

We recall that a Carathéodory solution to
ẋ = g(x) (2.4)

on an interval I ⊂ R by definition is an absolutely continuous function x : I 7→ Ω which satisfies (2.4) almost
everywhere on I. This holds if and only if, for every t0 ∈ I, one has

x(t) = x(t0) +

∫ t

t0

g
(
x(s)

)
ds ∀ t ∈ I.
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For any fixed x0 ∈ Ω, we shall denote with SC(x0) the set of all forward Carathéodory solution x(·) to (2.4) with
initial condition x(0) = x0 defined on some interval [0, T ). Moreover we call S

max

C (x0) the set of all maximal
forward Carathéodory solution to (2.4) with initial condition x(0) = x0, i.e. the set of all absolutely continuous
function γ(·) ∈ SC(x0) such that one of the following two cases holds:

i) the map γ(·) is defined on [0, ∞). In this case we set τ
max

(γ)
.
=∞.

ii) The map γ(·) is defined on [0, T ) for some T > 0 such that

lim sup
t→T−

(∣∣γ(t)
∣∣+

1

d
(
γ(t), ∂ Ω

)) =∞.

In this case we set τ
max

(γ)
.
= T.

As in [4, 19], we shall also consider a perturbed system associated to (2.4)

ẋ = g
(
x+ η(t)

)
+ ζ(t), (2.5)

where t → η(t), t → ζ(t) are integrable functions representing, respectively, a measurement error (in state
estimation) and an external disturbance. In connection with (2.5) we now introduce a definition of “Euler
polygonal solution” which takes into account initial measurement errors and external disturbances. Let

π = {a = t̃0 < t̃1 < · · · < t̃Nπ=b}

be a partition of the interval [a, b]. Denote

δπ
.
= sup

0≤i<Nπ

(t̃i+1 − t̃i)

its (maximal) mesh size and consider an Nπ-tuple of elements in Rn

{ci : 0 ≤ i < Nπ}, (2.6)

which represents a discrete external disturbance of the dynamic described by (2.4).

Definition 2.3. In the above setting, given any e ∈ Rn, a function xπ : [a, b] 7→ Ω recursively defined by

xπ(t) = xπ(a) +
(
g
(
xπ(a) + e

)
+ c0

)
(t− a) t ∈ [a, t̃1],

xπ(t) = xπ(t̃i) +
(
g
(
xπ(t̃i)

)
+ ci

)
(t− t̃i) t ∈ [t̃i, t̃i+1], 0 < i < Nπ,

(2.7)

will be called a forward Euler π-solution of (2.4) perturbed by the external disturbance

ζπ
.
= sup

0≤i<Nπ

|ci|,

and the initial measurement error ηπ
.
= |e|.

In this framework it will be also useful to introduce the following definition of “perturbed” patchy vector
field.
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Definition 2.4. Let
(
Ω, g, (Ωα, gα)

α∈A

)
be a smooth patchy vector field, and χ : Ω 7→ R+ a continuous

function. Assume that, for any single patch
(
Ωα, gα

)
, α ∈ A, there holds〈

gα(x) + v, n(x)
〉
< 0 whenever x ∈ ∂Ωα, |v| ≤ χ(x). (2.8)

Then, we say that the multivalued map G : Ω 7→ 2R
n

defined by

G(x)
.
= g(x) +B

(
0, χ(x)

)
x ∈ Ω, (2.9)

is an admissible multivalued perturbation of g.

Remark 2.2. Notice that, in view of Remark 2.1, in the definition of an admissible multivalued perturbation
G associated to a patchy vector field

(
Ω, g, (Ωα, gα)

α∈A

)
, it is sufficient to require that each vector field gα

satisfies (2.8) for every x ∈ ∂Ωα \
⋃
β>α Ωβ , |v| ≤ χ(x).

In connection with the control system (1.1), we first recall the definition of global null-asymptotic controlla-
bility, then we introduce a class of piecewise constant feedback control U = U(x) such that g(x) = f

(
x,U(x)

)
is

a patchy vector field which asymptotically stabilizes the system (1.2) at the origin. We consider as (open-loop)
admissible controls all the measurable functions u : [0, ∞)→ Rm such that u(t) ∈ K for a.e. t ∈ [0, ∞). For any
fixed x0 ∈ Rn and any admissible control u0, we denote x(· ; x0, u0) the forward Carathéodory solution to (1.1)
(i.e. the absolutely continuous function that satisfies (1.1) for a.e. t > 0) with initial condition x(0) = x0 and
control u = u0, defined on some maximal interval [0, τ

max

(x0, u0)).

Definition 2.5. The system (1.1) is said to be globally asymptotically controllable (to the origin) if the
following holds.

1. Attractiveness: for each x0 ∈ Rn there exists some admissible control u0
.
= ux0 such that the trajectory

t → x(t)
.
= x(t ; x0, u0) is defined for all t ≥ 0, i.e. τ

max

(x0, u0) = ∞, and such that x(t) → 0 as
t→∞.

2. Lyapunov stability: for each ε > 0 there exists δ > 0 such that for each x0 ∈ Rn with |x0| < δ there
is an admissible control u0 as in 1. such that |x(t)| < ε for all t ≥ 0.

Definition 2.6. Let
(
Ω, g, (Ωα, gα)

α∈A

)
be a patchy vector field. Assume that there exist control values

kα ∈ K such that, for each α ∈ A

gα(x)
.
= f(x, kα) ∀x ∈ Ωα \

⋃
β>α

Ωβ . (2.10)

Then the piecewise constant map

U(x)
.
= kα if x ∈ Ωα \

⋃
β>α

Ωβ . (2.11)

is called a patchy feedback control on Ω.

Remark 2.3. From Definitions 2.2 and 2.5, in view of Remark 2.1, it is clear that the field

g(x) = f
(
x, U(x)

)



450 F. ANCONA AND A. BRESSAN

defined in connection with a given patchy feedback
(
Ω, U, (Ωα, kα)

α∈A

)
is precisely the patchy vector field(

Ω, g, (Ωα, gα)
α∈A

)
associated with a family of fields

{
gα : α ∈ A

}
satisfying (2.10). Moreover, recalling the

notation (2.3) we have
U(x) = kα∗(x) ∀ x ∈ Ω. (2.12)

Definition 2.7. A patchy feedback control U : Rn\{0} 7→ K is said to asymptotically stabilize the closed-loop
system (1.2) with respect to the origin if the following holds.

1. Uniform attractiveness: for each x0 ∈ Rn \ {0} and for every Carathéodory trajectory γ of (1.2)
starting from x0 one has

lim
t→τmax(γ)

γ(t) = 0. (2.13)

2. Lyapunov stability: for each ε > 0 there exists δ > 0 such that, for each x0 ∈ Rn \ {0} with |x0| < δ
and for any Carathéodory trajectory γ of (1.2) starting from x0, one has

|γ(t)| < ε ∀ 0 ≤ t < τ
max

(γ). (2.14)

Next, we shall investigate robustness properties of a stabilizing patchy feedback
U : Rn \ {0} 7→ K with respect to small external perturbations of the system dynamics (1.2). This prob-
lem is best recasted in terms of differential inclusions as follows. Let χ : Rn 7→ R+ be a continuous map and
consider the differential inclusion

ẋ ∈ f
(
x, U(x)

)
+B

(
0, χ(x)

)
(2.15)

associated to the system (1.2). By a Caratéodory trajectory of (2.15) we mean an absolutely continuous function
x : I 7→ Rn \ {0}, defined on some interval I ⊂ R, which satisfies (2.15) for a.e. t ∈ I. This is equivalent to say
that there exists a measurable map ζ : I 7→ Rn such that∣∣ζ(t)∣∣ ≤ χ(x(t)

)
a.e. t ∈ I (2.16)

and for which x(·) is Caratéodory solution of the perturbed system

ẋ = f
(
x, U(x)

)
+ ζ(t). (2.17)

Definition 2.8. Let U : Rn \{0} 7→ K be a patchy feedback control that asymptotically stabilize the closed-
loop system (1.2) with rispect to the origin. We say that U is robust with respect to external disturbances if
there exists some strictly positive continuous function χ : Rn \{0} 7→ R+ such that 1. and 2. in Definition 2.7
hold also for the trajectories γ of (2.15).

3. Trajectories of patchy vector fields

The next proposition collects the main properties of trajectories of patchy vector fields.

Proposition 3.1. Let
(
Ω, g, (Ωα, gα)

α∈A

)
be a patchy vector field on an open domain Ω. Then the following

holds.

(i) If t → x(t) is a Carathéodory solution to (2.4) on an interval J , then t → ẋ(t) is piecewise smooth
and has a finite set of jumps on any compact subset J ′ ⊂ J . The function t 7→ α∗

(
x(t)

)
defined at (2.3)

is non-decreasing and left continuous. Moreover there holds

ẋ(t−) = g
(
x(t)

)
∀ t ∈ J

◦

. (3.1)
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(ii) For each x0 ∈ Ω, t0 ∈ R, the Cauchy problem (2.4) with initial condition x(t0) = x0 has at least one
local forward Carathéodory solution and at most one backward Carathéodory solution.

(iii) The set of Carathéodory solutions of (2.4) is closed. More precisely, if xn : [an, bn] 7→ Ω is a sequence of
solutions and, as n→∞ one has

an → a, bn → b, xn(t)→ x̂(t) ∀ t ∈ ]a, b[ , (3.2)

then x̂(·) is itself a Carathéodory solution of (2.4).

(iv) A function t→ x(t) is a Carathéodory solution to (2.4) if and only if it is the uniform limit on compact
sets, as mesh size tends to zero, of a sequence (xπn)n of forward Euler π-solution to (2.4) perturbed by
initial measurement errors (ηπn)n and external disturbances (ζπn)n with

lim
n→∞

ηπn = 0, lim
n→∞

ζπn = 0.

Proof. To prove (i), it is sufficient to show that t → ẋ(t) has a locally finite set of jumps and satisfies (3.1)

since then one can derive the conclusion by a standard compactness argument. Thus, given any τ ∈
◦
J, recalling

that
{

Ωα : α ∈ A
}

is a locally finite covering of Ω we can choose some interval (τ − δ, τ + δ] ⊂ J, which

intersects only finitely many elements of
{
x−1(Ωα) : α ∈ A

}
(in the case τ = inf J, choose an interval (τ, τ +δ]

with such a property). Then, set{
α1, . . . , αI

} .
=
{
α ∈ A : (τ − δ, τ + δ] ∩ x−1(Ωα) 6= ∅

}
·

We will show that t → ẋ(t) has a finite number of jumps in (τ, τ + δ]. To this end, observe that each
Eαi

.
= x−1(Ωα), 1 ≤ i ≤ I, being an open subset of R, is a countable disjoint union of open intervals, say

Jαi` , ` ∈ N. Moreover, from the definition of g it follows that, for any pair of intervals Jαi` , J
αj
h with non empty

intersection and such that αi 6= αj , there holds

α∗(x(t)) ≤ αj ∀ t ∈ Jαi` =⇒ supJαi` ≤ supJ
αj
h (3.3)

since otherwise one would have x
(
J
αj
h

)
⊂ Ωαj , x

(
supJ

αj
h

)
∈ ∂Ωαj , which is not possible because of the

transversality conditions (2.1). For simplicity of notations, by possibly renaming the indexes αi, we shall
assume in the following that

α1 > · · · > αI .

Then, by induction on m = 0, . . . , NI we shall prove that there exist points t0 = τ + δ > t1 > · · · > tI = τ − δ
such that, if we set

Fαi
.
= Eαi \

⋃
i<j≤I

Eαj ,

one has
Fα

I−m
∩ (τ − δ, τ + δ] = (tm+1, tm] (3.4)

which, recalling the Definition 2.2, yields the conclusion. Indeed, since

(τ − δ, τ + δ] ⊆
I⋃
i=1

Eαi

and because of
α∗(x(t)) ≤ αI ∀ t ∈ (τ − δ, τ + δ],
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from (3.3) it clearly follows that FαI ∩ (τ − δ, τ + δ] = EαI ∩ (τ − δ, τ + δ] must be equal to a single interval
(t1, τ + δ], proving (3.4) in the case m = 0. Next, assume to have established (3.4) for m = 0, . . . ,m, m ≥ 0.
Then, one has

(τ, t
m+1

] ⊂
I−m−1⋃
i=1

Fαi ⊂
I−m−1⋃
i=1

Eαi

and hence
α∗(x(t)) ≤ α

I−m−1 ∀ t ∈ (τ, t
m+1

].

Thus, using again (3.3) we deduce that Fα
I−m
∩(τ, τ+δ] must be equal to a single interval (tm+2 , tm+1 ], proving

the inductive step.

Concerning (ii), to prove the local existence of a forward Carathéodory solutions to (2.4), consider the index

ᾱ
.
= max

{
α : x0 ∈ Ωα

}
·

Because of the transversality condition (2.1), the solution of the Cauchy problem

ẋ = gᾱ(x), x(0) = x0

remains inside Ωᾱ for all t ≥ 0. Hence it provides also a solution of (2.4) on some positive interval [0, δ].

To show the backward uniqueness property, let x1(·), x2(·) be any two Carathéodory solutions to (2.4) with
x1(τ) = x2(τ) = x̄. For i = 1, 2, call

α∗i (t)
.
= max

{
α : xi(t) ∈ Ωα

}
·

By (i), the maps t 7→ α∗i (t) are piecewise constant, non-decreasing and left continuous. Hence there exists δ > 0
and indices α′, a′′ such that

α∗1(t) = α′, α∗2(t) = α′′ ∀t ∈ [τ − δ, τ ].

But then one has
α′ = α∗1(τ) = α∗2(τ) = α′′.

The uniqueness of backward solutions is now clear, because on [τ − δ, τ ] both x1 and x2 are solutions of the
same Cauchy problem with smooth coefficients

ẋ = gα′(x), x(τ) = x̄.

To prove (iii), consider a sequence
(
xn(·)

)
n

of Carathéodory solutions to (2.4) defined on some intervals [an, bn],
so that (3.2) holds.

Since
{

Ωα : α ∈ A
}

is a locally finite covering and because of (3.5), we may assume that each [an, bn]

intersects only a uniformly finite number of elements in
{
x−1
n (Ωα) : α ∈ A

}
. Then, set{

α1, . . . , αI
} .

=
{
α ∈ A : [an, bn] ∩ x−1

n (Ωα) 6= ∅ for some n
}

with
α1 ≤ · · · ≤ αI .

By (ii), for any n ∈ N, let t
n,0

= a ≤ · · · ≤ t
n,I

= b be an I + 1-tuple of points in [an, bn] such that

xn(t) ∈ Ωαi \
⋃
β>αi

Ωβ ∀ t ∈ (t
n,i−1 , tn,i ], i = 1, . . . , I. (3.6)
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The set
{
t ∈ [an, bn] : xn(t) ∈ Ωαi\

⋃
β>αi

Ωβ
}

may well be empty for some i = 1, . . . , I, n ∈ N, in which case

one has t
n,i−1 = t

n,i
. Notice that, because of Definition 2.2, from (3.6) it follows

xn(t) = xn(a) +
i−1∑
`=1

∫ t
n,`

t
n,`−1

g
α
`
(xn(s)) ds+

∫ t

t
n,i−1

g
αi

(xn(s)) ds ∀ t ∈ [t
n,i−1 , tn,i ]. (3.7)

On the other hand, by possibly taking a subsequence, we may assume that any
(
tn,i
)
n
, i = 0, . . . , I, converges

in [a, b] and set

t̂i
.
= lim
n→∞

t
n,i

i = 0, . . . , I.

Then, since

(t̂i−1, t̂i) =
∞⋃
k=1

∞⋂
n=k

(tn,i−1 , tn,i ],

from (3.5-3.7) we deduce

x̂(t) ∈ Ωαi \
⋃
β>αi

Ωβ,

x̂(t) = x̂(a) +
i−1∑
`=1

∫ t̂`

t̂`−1

gα
`
(x̂(s)) ds+

∫ t

t̂i−1

gαi(x̂(s)) ds

∀ t ∈ [t̂i−1, t̂i], i = 1, . . . , I. (3.8)

This, in particular, means that x̂(·) is the classical solution to

ẋ = gαi(x)

on [t̂i−1, t̂i], and that
˙̂x(s−) = gαi(x(s)) ∀ s ∈ (t̂i−1, t̂i].

Moreover observe that, because of the transversality condition (2.1), the set
{
t ∈ [t̂i−1, t̂i] : x̂(t) ∈ ∂Ωαi

}
is nowhere dense in [t̂i−1, t̂i]. Thus, if s is any point in (t̂i−1, t̂i] such that x̂(s) ∈ ∂Ωαi , there will be some
increasing sequence (sn)n ⊂ (t̂i−1, t̂i) converging to s and such that x̂(sn) ∈ Ωαi . But this yields a contradiction
to (2.1) since then

0 ≤ lim
n→∞

〈 x̂(s)− x̂(sn)

s− sn
, n
(
x̂(s)

)〉
=
〈

˙̂x(s−), n
(
x̂(s)

)〉
=
〈
gαi
(
x̂(s)

)
, n
(
x̂(s)

)〉
·

Hence, recalling the definition (2.2), from (3.8) we derive

x̂(t) ∈ Ωαi \
⋃
β>αi

Ωβ ∀ t ∈ (t̂i−1, t̂i], i = 1, . . . , I,

x̂(t) = x̂(a) +

∫ t

a

g
(
x̂(s)

)
ds ∀ t ∈ [a, b],

proving that x̂ : [a, b] 7→ Ω is the Carathéodory solution to (2.4) on [a, b].

Concerning (iv), consider now a sequence xπn : [a, b] 7→ Ω of forward Euler π-solutions to (2.4) associated
with partitions

πn =
{
t̃
n,0
, . . . , t̃

n,Nπn

}
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having initial error ηπn and discrete external disturbance{
cn,0 , . . . , cn,Nπn

}
·

Assume that maximal mesh size δπn = sup
i

(t̃
n,i+1

− t̃
n,i

), initial measurement error ηπn and external distur-

bance ζπn = sup
i
|cn,i | are such that

lim
n→∞

δπn = 0, lim
n→∞

ηπn = 0, lim
n→∞

ζπn = 0, (3.9)

and that (xπn)n converges uniformly on [a, b], as n → ∞, to some function x̂ : [a, b] 7→ Ω. Here, it is not
restrictive to suppose Ω to be bounded since, otherwise, one can clearly replace it with a neighborhood of
x̂
(
[a, b]

)
that contains all the sets xπn([a, b]

)
, for n sufficiently large. Observe that, since

{
Ωα : α ∈ A

}
is a locally finite covering of Ω, the interval [a, b] intersects only a uniformly finite number of elements in{
x−1
πn

(Ωα) : α ∈ A
}
. Then, set{

α1, . . . , αI
} .

=
{
α ∈ A : ∃ n s.t. [a, b] ∩ x−1

πn
(Ωα) 6= ∅

}
with

α1 ≤ · · · ≤ αI .

Moreover, because each field gαi is smooth on Ωαi and satisfies condition (2.1) at the boundary ∂ Ωαi , one can
choose 0 < ρ and find some constants L, C > 0, so that

sup
x∈B(Ωαi , ρ)
i∈{1,...,I}

|gαi(x)| ≤ L, sup
x∈B(Ωαi , ρ)
i∈{1,...,I}

|Dgαi(x)| ≤ C, (3.10)

cρ
.
= sup

{〈
gαi(y), n(x)

〉
: x ∈ ∂ Ωαi , y ∈ B(x, ρ) ∩ Ωαi , i = 1, . . . , I

}
< 0. (3.11)

The bound (3.10), in particular, implies that if ηπn < ρ one has∣∣xπn(t)− xπn(s)
∣∣ ≤ (L+ ζπn

)
δπn ∀ t, s ∈ [t̃n,m−1 , t̃n,m], 1 ≤ m ≤ Nπn . (3.12)

Hence, from (3.11-3.12) we deduce that, if n is large enough so that δπn , απn , ηπn are sufficiently small, for all
m = 1, . . . , Nπn there holds ∣∣xπn(t̃

n,m
)− xπn(t̃

n,m−1
)
∣∣ < ρ/2,

xπn(t̃
n,m−1

) ∈ Ωαi \
⋃
β>αi

Ωβ =⇒ xπn(t̃
n,m

) ∈
⋃
β≥αi

Ωβ .
(3.13)

Therefore, as in the proof of (iii), using (3.13) we find, for any n, an I+1-tuple of points t
n,0

= a ≤ · · · ≤ t
n,I

= b,
such that

xπn(t̃
n,m

) ∈ Ωαi \
⋃
β>αi

Ωβ ∀ t̃
n,m
∈ (t

n,i−1 , tn,i ], i = 1, . . . , I. (3.14)

By possibly taking a subsequence, each
(
t
n,i

)
n

will converge in [a, b]. We can thus set

t̂i
.
= lim
n→∞

t
n,i

i = 0, . . . , I.
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Hence, from (3.14) we deduce

x̂(t) ∈ Ωαi \
⋃
β>αi

Ωβ , ∀ t ∈ [t̂i−1, t̂i], i = 1, . . . , I. (3.15)

On the other hand observe that, if s̄ is any point in (t̂i−1, t̂i) such that x̂(s̄) ∈ ∂Ωαi , one can find an increasing
sequence of partition points t̃n,mn ∈ (tn,i−1, tn,i) of πn converging to s̄ slowly enough so that

lim sup
n→∞

x̂(s̄)− xπn
(
t̃
n,mn

)
s̄− t̃

n,mn

= lim sup
n→∞

xπn(s̄)− xπn
(
t̃
n,mn

)
s̄− t̃

n,mn

·

Moreover, for n large enough, one can assume that

(t̃
n,mn

, s̄) ⊂ (tn,i−1, tn,i),∣∣〈cn,`, n
(
x̂(s̄)

〉∣∣ < |cρ|/2 ∀ `,∣∣xπn(t)− x̂(s̄)
∣∣ < ρ ∀ t ∈ [t̃

n,mn
, s̄],

where ρ, cρ, are as in (3.10-3.11). But then, letting

t̃n,mn < · · · < t̃n,mp ≤ s̄

denote the partition points of πn lying between t̃
n,mn

and s̄, setting t̃
n,mp+1

.
= s̄ and using (3.12), one would

derive a contradiction since

0 ≤ lim sup
n→∞

〈 x̂(s̄)− xπn
(
t̃
n,mn

)
s̄− t̃

n,mn

, n
(
x̂(s̄)

)〉
= lim sup

n→∞

〈xπn(s̄)− xπn
(
t̃
n,mn

)
s̄− t̃

n,mn

, n
(
x̂(s̄)

)〉
= lim sup

n→∞

(
t̃
n,mp+1

− t̃
n,mn

)−1
mp∑
`=mn

(t̃
n,`+1
− t̃

n,`
)
〈
gαi
(
xπn
(
t̃
n,`

))
+ c

n,`
, n
(
x̂(s̄)

)〉
≤ −|cρ|/2.

Whence, by (3.15), it must be

x̂(t) ∈ Ωαi \
⋃
β>αi

Ωβ, ∀ t ∈ (t̂i−1, t̂i), i = 1, . . . , I. (3.16)

Next, set

Jn
.
=

⋃
{1≤i≤I : t̂i−1 6=t̂i}

(tn,i−1 , tn,i ]

and, since xπn(tn,i)→ x̂(t̂i), let n be large enough so that

δπn � inf
{

(tn,i − tn,i−1) : t̂i−1 6= t̂i, 1 ≤ i ≤ I
}
· (3.17)

Then, if t
n,i

is a point satisfying (3.14) such that t̂i−1 6= t̂i, and t̃
n,`

denotes any partition point of πn in
(t
n,i−1 , tn,i), one has∣∣xπn(t̃

n,`
)− xπn(t)

∣∣ ≤ (L+ ζπn)δπn ∀ t ∈
(
tn,i−1+δπn , tn,i

)
∩ (t̃

n,`
, t̃

n,`+1
).
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Thus, there follows∣∣ẋπn(t)− gαi(xπn(t))
∣∣ =

∣∣g(xπn(t)
)

+ c
n,`
− gαi

(
xπn(t)

)∣∣ =
∣∣gαi(xπn(t̃

n,`
)
)

+ c
n,`
− gαi

(
xπn(t)

)∣∣
≤
∣∣gαi(xπn(t̃

n,`
)
)
− gαi

(
xπn(t)

)∣∣+ ζπn

< C
(
L+ ζπn

)
δπn + ζπn , ∀ t ∈

(
t
n,i−1

+δπn , tn,i
)
.

Hence, for any i = 1, . . . I, and any t ∈ [a, b] ∩ [t
n,i−1 , tn,i ], if n is large enough so that ηπn < ρ with ρ as in

(3.10), we have

∣∣∣∣xπn(t)−xπn(a)−

∫ t

a

g
(
xπn(s)

)
ds

∣∣∣∣ ≤ i−1∑
j=1

∫ t
n,j

t
n,j−1

+δπn

∣∣∣ẋπn(s)− gαj
(
xπn(s)

)∣∣∣ds
+

∫ t

t
n,i−1

+δπn

∣∣∣ẋπn(s)−gαi
(
xπn(s)

)∣∣∣ds+
(
Iδπn+

∣∣Jn∣∣)2L
≤ (t− a)

[
C
(
L+ ζπn

)
δπn + ζπn

]
+
(
Iδπn +

∣∣Jn∣∣)2L.
(3.18)

Letting n→∞ in (3.18), since ζπn , δπn ,
∣∣Jn∣∣→ 0, we obtain∣∣∣∣x̂(t)− x̂(a)−

∫ t

a

g
(
x̂(s)

)
ds

∣∣∣∣ = 0 ∀ t ∈ [a, b]

proving that x̂(·) is the Carathéodory solution to (2.4) on [a, b].
Assume now that a given function x̂ : [a, b] 7→ Ω is a Carathéodory solution of (2.4) on [a, b]. We shall

construct a sequence (xπn)n of forward Euler π-solutions to (2.4) perturbed by some external disturbance which
converge, uniformly on [a, b], to x̂ as mesh size and external disturbance both tend to zero. Let{

α1, . . . , αI
} .

=
{
α ∈ A : [a, b] ∩ x̂−1(Ωα) 6= ∅

}
with

α1 < · · · < αI .

By (ii), denote t̂0 = a < · · · < t̂I = b an I + 1-tuple of points in [a, b] such that

x̂(t) ∈ Ωαi \
⋃
β>αi

Ωβ ∀ t ∈ (t̂i−1, t̂i], i = 1, . . . , I. (3.19)

Next, for any n ∈ N, define the partition πn =
{
t̃
n,`

; 0 ≤ ` ≤ nI
}

by setting

t̃
n,0

.
= a, t̃

n,ni+m

.
= t̃

n,ni
+
m

n

(
t̂i+1 − t̂i

)
i = 0, . . . , I − 1, m = 1, . . . , n.

Then, since x̂(·) is the classical solution to

ẋ = gαi(x)

on [t̂i−1, t̂i], for every m = 1, . . . , n, choose s
n,ni+m

∈ (t̃
n,ni+m

, t̃
n,ni+m+1

) such that

gα
i+1

(
x̂
(
s
n,ni+m

))
= ˙̂x

(
s
n,ni+m

)
=
x̂
(
t̃
n,ni+m+1

)
− x̂
(
t̃
n,ni+m

)
t̃
n,ni+m+1

− t̃
n,ni+m

· (3.20)
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Moreover, by (3.19), x̂(a) ∈ Ωα1 \
⋃
β>α1

Ωβ and hence there will be a sequence (en)n in Rn, with ηn
.
= |en| → 0

as n→∞, such that

x̂(a) + en ∈ Ωα1 \
⋃
β>α1

Ωβ ∀ n. (3.21)

In connection with the partition πn, let xπn be the forward Euler π-solution to (2.4) perturbed by the discrete
external disturbance

c
n,ni+m

.
= gα

i+1

(
x̂
(
s
n,ni+m

))
− gα

i+1

(
x̂
(
t̃
n,ni+m

))
i = 0, . . . , I − 1, m = 1, . . . , n, (3.22)

with initial measurement error en as above, and with initial condition xπn(a) = x̂(a). Notice that ζπn
.
=

sup
i,m

∣∣cn,ni+m∣∣→ 0 as n→∞, and xπn is recursively defined by

xπn(t)=


x̂(a) + g

(
x̂(a) + en

)
(t− a) if t ∈ [a, t̃

n,1
],

xπn
(
t̃
n,ni+m

)
+
x̂
(
t̃
n,ni+m+1

)
−x̂
(
t̃
n,ni+m

)
t̃
n,ni+m+1

− t̃
n,ni+m

(
t− t̃

n,ni+m

)
if t ∈ [t̃

n,ni+m
, t̃
n,ni+m+1

]

ni+m > 0,

i.e., xπn is precisely the polygonal function with vertices at the points x̂
(
t̃
n,`

)
, 0 ≤ ` ≤ nI, of x̂. Such

polygonals converge uniformly to x̂ as mesh size

δπn
.
=

1

n

[
sup

0≤i≤I−1

∣∣t̂i+1 − t̂i
∣∣]

tends to zero. Indeed, for n sufficiently large, we can assume that

xπn(t) ∈ Ωαi ∀ t ∈ [t̂i−1, t̂i], i = 1, . . . , I,

and hence, letting C, L > 0 be some constant such that

sup
x∈Ωαi

i∈{1,...,I}

|gαi(x)| ≤ L, sup
x∈Ωαi

i∈{1,...,I}

|Dgαi(x)| ≤ C,

from
ẋπn(t) = gα

1

(
x̂(a) + en

)
t ∈ [a, t̃n,1 ],

ẋπn(t) = gα
i+1

(
x̂(sn,ni+m)

)
t ∈ (t̃n,ni+m , t̃n,ni+m+1) ni+m > 0,

we deduce ∣∣∣xπn(t)− x̂(t)
∣∣∣ ≤ ∫ t

a

∣∣ẋπn(s)− ˙̂x(s)
∣∣ ds ≤ [(b− a)L+ ηn

]
C δπn

thus concluding the proof.

An Example. Consider the covering of Ω
.
= R2 consisting of

Ω1
.
= Ω,

Ω2
.
=
{

(x1, x2) ∈ Ω : x2 < −x
2
1

}
,

Ω3
.
=
{

(x1, x2) ∈ Ω : x2 > x2
1

}
,
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and the family of inward-pointing vector fields

g1 : Ω1 → R2, f1(x1, x2)
.
= (1, 2x1),

g2 : Ω2 → R2, f2(x1, x2)
.
= (0, −1),

g3 : Ω3 → R2, f3(x1, x2)
.
= (0, 1).

Then, the vector field g on Ω defined by

g(x1, x2) =


(1, 2x1) if |x2| ≤ x2

1,

(0, −1) if x2 < −x2
1,

(0, 1) if x2 > x2
1,

is the patchy vector field associated with
{

Ωα : α = 1, 2, 3
}

and
{
gα : α = 1, 2, 3

}
· We shall compare now

the set of Carathéodory solutions to the Cauchy problem

ẋ = g(x), x(0) = (−1, 1), (3.23)

with the sets of various other types of generalized solutions considered in the literature.

1. Consider the set S
max

C of maximal forward Carathéodory solutions to (3.23). Let x̃ : [0,∞) 7→ Ω be the
map defined by

x̃(t)
.
=

{(
−1 + t, 1− 2t+ t2

)
if 0 ≤ t ≤ 1,(

0, 1− t
)

if t ≥ 1,
(3.24)
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and, for any fixed s ∈ R+, define the maps

xs : [0,∞) 7→ Ω, xs(t)
.
=

{(
−1 + t, 1− 2t+ t2

)
if 0 ≤ t ≤ s,(

−1 + s, 1− 3s+ s2 + t
)

if t ≥ s.
(3.25)

Then one has
S

max

C =
{
x̃
}
∪
{
xs : 0 ≤ s ≤ ∞

}
·

2. Consider the set S
max

E of uniform limits of forward Euler-solutions to (3.23) without any (initial state-
measurement or external) perturbation, defined on [0, ∞), i.e. the set of functions that are uniform limits of
some sequence of polygonal maps recursively defined by

xπ(0) = (−1, 1), xπ(t) = xπ(t̃i) + g
(
xπ(t̃i)

)
(t− t̃i) t ∈ [t̃i, t̃i+1],

in connection with partitions πn = {t̃n,0, t̃n,1, . . . , t̃n,Nπn} of [0, ∞) having mesh size δπn → 0. Then one
has

S
max

E =
{
x̃
}
∪
{
x∞
}
,

with x̃ defined as in (3.24).

3. Consider the set S
max

S of uniform limits of sampling-solutions to (3.23) on [0, ∞), i.e. the set of functions
that are uniform limits of some sequence of piecewise smooth maps recursively obtained by solving

ẋπ(t) = gα∗(xπ(t̃i))

(
xπ(t)

)
t ∈ [t̃i, t̃i+1],

using as initial condition xπ(t̃i) the endpoint of the solution on the preceding interval (and starting with
xπ(0) = (−1, 1)), in connection with partitions πn = {t̃n,0, t̃n,1, . . . , t̃n,Nπn} of [0, ∞) having mesh size
δπn → 0. Then one has

S
max

S =
{
x∞
}
,

with x∞ defined as in (3.25).

4. Consider the set S
max

F of Filippov solutions to (3.23) on [0, ∞), i.e. the set of absolutely continuous function
x : [0, ∞) 7→ Ω that satisfy

ẋ(t) ∈ F
(
x(t)

)
a.e. t > 0,

with
F (x) =

⋂
δ>0

⋂
|N|=0

co g
(
B(x, δ) \ N

)
,

where co denotes the closed convex hull. For any fixed 1 ≤ r ≤ ∞, define the maps

yr : [0,∞) 7→ Ω, yr(t)
.
=


(
−1 + t, 1− 2t+ t2

)
if 0 ≤ t ≤ 1,(

0, 0
)

if 1 ≤ t ≤ r,(
0, r − t

)
if t ≥ r,

zr : [0,∞) 7→ Ω, zr(t)
.
=


(
−1 + t, 1− 2t+ t2

)
if 0 ≤ t ≤ 1,(

0, 0
)

if 1 ≤ t ≤ r,(
0, −r + t

)
if t ≥ r.

(3.26)

Then one has

S
max

F =
{
x̃
}
∪
{
xs : 0 ≤ s ≤∞

}
∪
{
yr : 1 ≤ r ≤∞

}
∪
{
zr : 1 ≤ r ≤ ∞

}
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with x̃, xs, x∞, yr, zr, defined as in (3.24–3.26).

We remark that the set S
max

C of Carthéodory solutions is disconnected, being the union of the two disjoint
sets

{
x̃
}

and
{
xs : 0 ≤ s ≤∞

}
.

The next Proposition provides analogous properties of those given by Proposition 3.1, for the trajectories of
patchy vector fields subject to small external perturbations.

Proposition 3.2. Let χ : Ω 7→ R+ be a continuous map, and G : Ω 7→ 2R
n

an admissible multivalued
perturbation of a smooth patchy vector field

(
Ω, g, (Ωα, gα)

α∈A

)
defined by

G(x)
.
= g(x) +B

(
0, χ(x)

)
x ∈ Ω. (3.27)

Then the following holds.

(i) If t 7→ x(t) is a Carathéodory solution to

ẋ ∈ G(x), (3.28)

then the map t 7→ α∗(t)
.
= max{α : x(t) ∈ Ωα} is non-decreasing and left continuous.

(ii) For each x0 ∈ Ω, t0 ∈ R, the Cauchy problem (3.28) with initial condition x(t0) = x0 has at least one
local forward Carathéodory solution.

(iii) The set of Carathéodory solutions of (3.28) is closed in the topology of uniform convergence.

The proof is entirely similar to the one of Proposition 3.1. �

4. Stabilization by patchy feedbacks

Toward the construction of a piecewise constant feedback which asymptotically stabilize a given asymptoti-
cally controllable system, we first establish two intermediate results.

Proposition 4.1. Let system (1.1) be globally asymptotically controllable to the origin. Then, for every
0 < r < s there exist T = T (r, s) > 0, R = R(r, s) > 0, χ = χ(r, s) > 0, and a patchy feedback control
U=Ur,s : Dr,s 7→ K defined on some domain Dr,s satisfying

B(0, s)\◦ → B
(
0, r
)
⊂ Dr,s ⊂ B(0, R), (4.1)

such that, for any measurable map ζ : [0,∞) 7→ Rn with

|ζ(t)| ≤ χ for a.e. t > 0,

and for any initial state x0 ∈ Dr,s \
◦
B
(
0, r
)
, the perturbed system (2.17) admits a Carathéodory trajectory

starting from x0. Moreover, for any such trajectory γ(·), there exists tγ ≤ T, tγ < τ
max

(γ), such that

|γ(tγ)| < r. (4.2)
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Proof. The proof is given in three steps.

Step 1. Fix 0 < r < s. Since (1.1) is globally asymptotically controllable and because the set of piecewise
constant admissible controls is dense in the set of all admissible controls, for each x0 ∈ B

(
0, s
)

we can find a
piecewise constant admissible control u0 = ux0 and some constant T0 = Tx0 > 0 such that∣∣x(T0; x0, u0)

∣∣ < r/2. (4.3)

Moreover, by possibly redefining u0, we may assume that γ0(·)
.
= x(· ; x0, u0) takes different values at any

two different poins t, t′ ∈ [0, T0]. Let t
0,0

= 0 < t
0,1
< · · · < t

0,N0
= T0 be the points of discontinuity for u0 on

[0, T0] and k
0,j
∈ K the corresponding values of u0, i.e.

u0(t) = k
0,j

if t ∈ (t
0,j−1

, t
0,j

), j = 1, . . . , N0. (4.4)

Set
M0 = Mx0

.
= sup
t∈[0,T0]

∣∣γ0(t)
∣∣. (4.5)

By the regularity of f and the compactness of the set K of admissible control values, there exists some constant
c0 = cx0 > 0 such that, for any fixed τ ∈ [0, T0], any initial point x ∈ B

(
γ0(τ), ρ

)
, ρ > 0, and any Carathéodory

trajectory γρ,χ(·), χ > 0, of
ẋ = f

(
x, u0(t)

)
+B

(
0, χ

)
(4.6)χ

starting from x at time t = τ, there holds

sup
t∈[τ,T0+ρ]

∣∣γ
ρ,χ

(t)− γ0(t)
∣∣ < c0

(
ρ+ χ) ρ, χ > 0. (4.7)

Thus, one can inductively deduce that for any fixed j = 1, . . .N0 − 1, if

x ∈ B
(
γ0(t

0,j
),

j∑
k=2

ck−1
0 χ+ cj0(ρ+ χ)

)
ρ > 0,

and let γρ,χ(·), χ > 0, be any Carathéodory trajectory of (4.6)χ starting from x at time t = t
0,j
, then one has

sup
t∈[t

0,j
,T0+ρ]

∣∣γ
ρ,χ

(t)− γ0(t)
∣∣ < j+1∑

k=2

ck−1
0 χ+ cj+1

0 (ρ+ χ) ρ, χ > 0. (4.8)

Choose ρ0 = ρx0 > 0, χ0 = χx0 > 0 such that

N0∑
k=2

ck−1
0 2χ0 + cN0

0 (ρ0 + 2χ0) < r/2 (4.9)

and set

ρx0,1
=ρ0,1

.
=ρ0, ρx0,j

=ρ0,j
.
=

j∑
k=3

ck−2
0 2χ0 + cj−1

0 (ρ0 + 2χ0) j = 2, . . .N0 + 1.

Step 2. Fix x0, r ≤ |x0| ≤ s, and let χ0, ρ0,j , u0 be as in Step 1. We shall construct now, around the graph

of the trajectory γ0(·)
.
= x(· ; x0, u0), an open “increasing tube” starting from

◦
B(x0, ρ0) which is positively



462 F. ANCONA AND A. BRESSAN

r0

γ0

Γ

γ0(T   )0

x
0

Γx

x0 ,2

0 ,1

Figure 2

invariant with respect to the perturbed system (4.6)χ0 , and then define an admissible multivalued perturbation
of a patchy vector field on such a tube. For any j = 1, . . .N0, and for any fixed x ∈ Rn, denote Aj

(
x, t
)

the
attainable set for

ẋ ∈ f
(
x, k

0,j

)
+B

(
0, 2χ0

)
(4.10)

at time t ≥ 0 i.e., the set of all points x = γ(t) where γ is any Carathéodory trajectory of (4.10) defined on
some interval [0, τ), t < τ, with γ(0) = x. Define the sets

Γx0,j
.
=

⋃
x∈
◦
B(γ0(t

0,j−1 ), ρ
0,j

)

0≤t≤t
0,j
−t

0,j−1

Aj
(
x, t
)
, 1 ≤ j < N0

Γx0,N0

.
=

⋃
x∈
◦
B(γ0(t

0,N0−1
), ρ

0,N0
)

0≤t≤T0+ρ0−t0,N0−1

AN0

(
x, t
)
,

(4.11)

∆x0

.
=

N0⋃
j=1

Γx0,j . (4.12)

Observe that, by the regularity of f, for any z ∈ ∂ Γx0,j \ Γx0,j+1 one can find some cone

Cz =
{
y ∈ Rn : ∃ 0 ≤ λ < λ s.t |y − λf(z)| ≤ λχ0

}
, λ > 0,

such that

Cz \ {z} ⊂

⋃
t≥0

A
◦

j (z, t)

 \ Γx0,j+1.

But, since ⋃
t≥0

A
◦

j

(
z, t
) \ Γx0,j+1 ⊂

⋃
x∈
◦
B(γ0(t

0,j−1 ), ρ
0,j

)

0≤t≤t
0,j
−t

0,j−1

A
◦

j

(
x, t
)
,
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it follows that
Cz \ {z} ⊂ Γx0,j ,

which implies〈
f
(
z, k

0,j

)
+ v, n(z)

〉
< 0 ∀ v ∈ B

(
0, χ0

)
, z ∈ ∂ Γx0,j \ Γx0,j+1, 1 ≤ j < N0 (4.13)

(denoting with n(z) the outer normal to Γx0,j). With similar arguments one can verify that

〈
f
(
z, k

0,N0

)
+ v, n(z)

〉
< 0

∀ v ∈ B
(
0, χ0

)
,

∀ z ∈ ∂ Γx0,N0

⋂


⋃
x∈B(γ0(t

0,N0−1
), ρ

0,N0
)

0≤t≤T0−t0,N0−1

AN0

(
x, t
)
 .

(4.14)

Now, let h be a smooth vector field such that

h(x) = −n(x) ∀ x ∈ ∂ Γx0,N0,

then construct a smooth scalar function φ : ∆x0 7→ [0, 1] such that

φ(x) =



1 if x ∈
⋃

x∈B(γ0(t
0,N0−1

), ρ
0,N0

)

0≤t≤T0−t0,N0−1

AN0

(
x, t
)

0 if x ∈
⋃

x∈B(γ0(t
0,N0−1

), ρ
0,N0

)

AN0

(
x, T0+ρ0− t0,N0−1

)
,

and define the interpolated field

g
0,N0

.
= φ(x)f(x, k

0,N0
) +

(
1− φ(x)

)
h(x).

Finally, denote g
0,j

= gx0,j the vector field on Rn defined by

g
0,j

(x)
.
= f(x, k

0,j
) 1 ≤ j < N0,

and g0 = gx0 the vector field on ∆x0 defined by

g0(x)
.
= g

0,j
(x) if x ∈ Γx0,j \

⋃
`>j

Γx0,`. (4.15)

Then, using (4.13–4.14) and in view of Remarks 2.1 and 2.2, we deduce that the following holds.

i) The triple
(
∆x0 , g0, (Γ

x0,j
, g

0,j
)
1≤j≤N0

)
is a smooth patchy vector field on ∆x0 .

ii) The multivaled map G0 : ∆x0 7→ 2R
n

defined by

G0(x)
.
= g0(x) +B

(
0, χ0

)
x ∈ ∆x0 , (4.16)

is an admissible multivalued perturbation of
(
∆x0 , g0, (Γ

x0,j
, g

0,j
)
1≤j≤N0

)
according with Definition 2.4.
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iii) By Proposition 3.2-i), for any Carathéodory trajectory γ of

ẋ ∈ G0(x) (4.17)

starting from some point x ∈ Γx0,j
at time t = 0, there exists an H-tuple of points t̃1 = 0 < · · · < t̃H =

T0 − t0,j−1 (H ≤ N0 − j), and indices j ≤ `1 < · · · < `H ≤ N0, such that

γ(t) ∈ Γ
x0,`h
\
⋃
k>`h

Γ
x0,k

∀ t ∈ (t̃h−1, t̃h].

Moreover, because of (4.3, 4.5, 4.8, 4.9), one has

|γ(t)| ≤ |γ(t)− γ0(t+ t
0,j−1)|+ |γ0(t+ t

0,j−1)|

< ρ
0,N0+1

+M0
∀ t ∈ [0, T0 − t0,j−1 ], (4.18)

and
|γ(T0 − t0,j−1)| ≤ |γ(T0 − t0,j−1)− γ0(T0)|+ |γ0(T0)|

< ρ
0,N0+1

+ r/2 < r.
(4.19)

Step 3. For any fixed x0, r ≤ |x0| ≤ s, let Tx0, Mx0 , χx0 , ρx0,j
, k

x0,j
, be as in Step 1. The family of open

tubes {∆x0 : r ≤ |x0| ≤ s} constructed in Step 2 forms an open covering of the compact set B
(
0, s
)
\
◦
B
(
0, r
)
.

Let {
∆i = ∆xi : i = 1, . . . , N(r, s)

}
, ∆i =

Ni⋃
j=1

Γi,j , Γi,j = Γxi,j ,

be a finite subcover. Denote

g
i,j

(x)
.
= f(x, ki,j), ki,j = kxi,j .

The index set

A =
{

(i, j) : i = 1, . . . , N(r, s), j = 0, . . . , Ni
}

can be totally ordered by letting

(i, j) ≺ (h, k) if either i < h or else i = h, j < k.

Then, if we set

Dr,s .
=

N(r,s)⋃
i=1

∆i,

and define the map Ur,s : Dr,s 7→ K by

Ur,s(x) = ki,j if x ∈ Γi,j \
⋃

(h,k)>(i,j)

Γh,k,

thanks to the properties established in Step 2 and in view of Remarks 2.1 and 2.3, the triple
(
Dr,s, Ur,s,

(Γi,j , ki,j)(i,j)∈A

)
is a patchy feedback control on Dr,s. Moreover, if we let gr,s denote the corresponding patchy

vector field defined by

gr,s(x) = f
(
x, Ur,s(x)

)
,

the multivalued map Gr,s : Dr,s 7→ 2R
n

defined by

Gr,s(x)
.
= gr,s(x) +B

(
0, χr,s

)
, χr,s = min

1≤i≤N(r,s)
χxi ,
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is an admissible perturbation of
(
Dr,s, gr,s, (Γi,j , gi,j)(i,j)∈A

)
according with Definition 2.4 and Remark 2.2.

Thus, if we set

T (r, s)
.
=

N(r,s)∑
i=1

Txi,

R(r, s)
.
= sup

1≤i≤N(r,s)

[
ρxi,Ni+1 +Mxi

]
,

by Proposition 3.2-i) and thanks to the properties established in Step 2 we deduce that, for any Carathéodory
trajectory γ of

ẋ ∈ Gr,s(x) (4.20)

starting from some point x ∈∈ Dr,s \
◦
B
(
0, r
)

at time t = 0, there exists an H-tuple of points t̃1 = 0 < · · · <
t̃H ≤ T (r, s) (H ≤ N(r, s) + 1), and indices 1 ≤ `1 < · · · < `H ≤ N(r, s), such that there holds

t̃h − t̃h−1 < Tx`h , (4.21)

γ(t) ∈ ∆
`h
\
⋃
k>`h

∆k

|γ(t)| < ρ
x`h

,N`h
+1

+M
x`h

∀ t ∈ (t̃h−1, t̃h], (4.22)

γ(t̃H) < r. (4.23)

In particular, from (4.22) it follows

|γ(t)| < R(r, s) ∀ t ∈ [0, t̃H ], (4.24)
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which, together with (4.23), yields (4.1, 4.2) concluding the proof.

Proposition 4.2. Let system (1.1) be globally asymptotically controllable to the origin. Then, for any fixed
ε > 0 there exists δ = δ(ε) > 0 such that for any 0 < r < s ≤ δ one can find T = T (r, s) > 0, R = R(r, s) >
0, χ = χ(r, s) > 0, and a patchy feedback control U=Ur,s : Dr,s 7→ K as in Proposition 4.1, with

R(r, s) < ε. (4.25)

Proof. We shall implement the same construction of the proof of Proposition 4.1 the only difference consisting in
the more careful choice of the stabilizing open-loop control ux0 = u0 associated to each point x0, r ≤ |x0| ≤ s.
Fix ε > 0. Since (1.1) is globally asymptotically controllable, there will be some constant

0 < δ = δ(ε) < ε (4.26)

such that, for any fixed 0 < r < s ≤ δ and for each x0, |x0| ≤ s, we can find a piecewise constant admissible
control u0 = ux0 and some constant T0 = Tx0 > 0 such that there holds (4.3) together with

|γ0(t)| < ε/2 ∀ t ∈ [0, T0].

This means that the constant M0 = Mx0 defined in (4.5) satisfies the uniform bound

M0 < ε/2. (4.27)

But then, performing the same construction developed in the previous proposition and adopting the same
notation, since by (4.9) one has

ρ
x0,N0+1

< r/2 ≤ δ/2,

from (4.22, 4.26, 4.27) we deduce that, for any fixed x, r ≤ |x| ≤ s, and for any Carathéodory trajectory γ of
(4.20) starting from x, there exists 0 < tγ < T (r, s), such that

|γ(tγ)| < r,

|γ(t)| < δ/2 + ε/2 < ε ∀ 0 ≤ t ≤ tγ ,

proving (4.25).

Theorem 1. If the system (1.1) is asymptotically controllable, then it admits an asymptotically stabilizing,
piecewise constant patchy-feedback, that is robust with respect to external disturbances.

Proof. Let (δn)n∈N be a decreasing sequence of positive number chosen according with Proposition 4.2 so that,
for any fixed 0 < r < s ≤ δn, one can find T = T (r, s) > 0, R = R(r, s) > 0, χ = χ(r, s) > 0, and a patchy
feedback control U=Ur,s : Dr,s 7→ K as in Proposition 4.1, with

R(r, s) < 1/n.

Define inductively two decreasing sequences of positive numbers (sn)n∈N, (rn)n∈N, converging to zero and
satisfying

rn−1 < sn ≤ δn, (4.28)

and two increasing sequences of positive number (s−n)n∈N, (r−n)n∈N, diverging to infinity and satisfying

r−(n+1) < s−n. (4.29)
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For any n ∈ Z, let Tn = T (rn, sn) > 0, Rn = R(rn, sn) > 0, χn = χ(rn, sn) > 0, be defined as in Proposition 4.1
in connection with a patchy feedback control(

Drn,sn , Urn,sn ,
(
Γni , k

n
i

)
1≤i≤Nn

)
,

and satisfying
R(rn, sn) < 1/n ∀ n ∈ N. (4.30)

The index set
B =

{
(n, i) : n ∈ Z, i = 1, . . . , Nn,

}
can be totally ordered by letting

(n, i) ≺ (m, j) if either n < m or else n = m, i < j.

Then, if we define the map U : Rn\{0} 7→ K by setting

U(x) = kni if x ∈ Γni \
⋃

(m,j)>(n,i)

Γmj ,

thanks to the properties established in Proposition 4.1 and in view of Remarks 2.1, 2.3, the triple(
Rn\{0}, U, (Γni , k

n
i )(i,n)∈B

)
(4.31)

is a patchy feedback control on Rn\{0}. Next, set

χ̃(x) = χn if x ∈ Drn,sn \
⋃
m>n

Drm,sm ,

and consider the inf-convolution of χ̃ with | · |, i.e. the map χ : Rn \ {0} → R+ defined by

χ(x) = inf
y∈Rn\{0}

{
χ̃(y) + |y − x|}·

One can easily verify that χ is Lipschitzian with constant 1 and clearly it satisfies

χ(x) ≤ χ̃(x) ∀x ∈ Rn \ {0}·

Therefore, if we let g(x) = f
(
x, U(x)

)
denote the patchy vector field associated with (4.31), and set

gni (x) = f
(
x, kni

)
if x ∈ Γni \

⋃
(m,j)>(n,i)

Γmj ,

the multivalued map G : Rn\{0} 7→ 2R
n

defined by

G(x)
.
= g(x) +B

(
0, χ(x)

)
is an admissible perturbation of

(
Rn\{0}, g, (Γni , g

n
i )(i,n)∈B

)
according with Definition 2.4 and Remark 2.2.

Now, given x0 ∈ Rn \ {0}, consider any Carathéodory trajectory γ of (2.15), with G as above, starting from
x0. Fix an arbitrary 0 < r < |x0| and let m < n, 0 < n, be such that

x0 ∈ D
rm,sm \

⋃
p>m

Drp,sp , rn < r.
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Then, by Proposition 3.2)-i), we deduce that there exists an H-tuple of points
t̃1 = 0 < · · · < t̃H ≤

∑n
p=m Tp (H ≤ 1 +

∑n
p=mNp), and induces m ≤ nh ≤ n, 1 ≤ `h ≤ Nnh , such

that there holds
t̃h − t̃h−1 < Tnh , (4.32)

γ(t) ∈ Γnh
`h
\

⋃
(p,k)>(nh,`h)

Γkp

|γ(t)| ≤ R(rnh , snh)

∀ t ∈ (t̃h−1, t̃h], (4.33)

γ(t̃H) < r. (4.34)

In particular, (4.34) yields (2.13) being r arbitrary, while from (4.33) and (4.30) one can recover the Lyapunov
stability, concluding the proof.

Remark 4.1. The idea of using a piecewise-constant feedback law to stabilize an asymptotycally controllable
system has been recently employed also by Nikitin in [21]. The feedback synthesis U = U(x) outlined in [21]
stabilizes the system (1.1), over a given compact subset K of the state space Rn, in the following sense. For
every initial data x0 ∈ K, there exists at least one (Carathéodory) solution to the Cauchy problem

ẋ = f
(
x, U(x)

)
, x(0) = x0, (4.35)

which asymptotycally converges to the equilibrium state x∗. However, since the resulting vector field f
(
x, U(x)

)
,

in general, does not satisfy any transversality condition, one can produce examples where the algorithm proposed
by Nikitin generates a feedback control with the following property:

for every initial data x0 in the starting domain K, the Cauchy problem (4.35) has infinitely many
Carathéodory solutions. Some of these solutions asymptotically approache x∗, others become eventu-
ally periodic and have no limit as t→∞.

Notice that, even if one introduces an appropriate definition of solution so to rule out those trajectories
which do not approach the equilibrium state, a feedback of this type will be by no means robust w.r.t. dynamic
perturbations. This behaviour is illustrated by the following
Example 4.1. Consider a two-dimensional system with scalar controls

ẋ = f(x, u), x = (x1, x2) ∈ R2, u ∈ K ⊂ R, (4.36)

and assume that there exist control values k1, k2 ∈ K such that

f(x, k1) = (x2 − 2, 4− x1),

f(x, k2) = (−1, 0).

We are interested in a problem of semiglobal practical stabilization for the system (4.36) over the domain

K =
{

(x1, x2) : 2 ≤ x1 ≤ 3, x2 = 2
}
·

Namely, we look for a feedback U = U(x) which steers any point x0 of K into the unit ball B1
.
= B(0, 1), within

finite time. Following the construction in [21] we define a feedback law U∗ = U∗(x) by setting

U∗(x1, x2) =

{
k1 if 1 < |x2|,

k2 if |x2| ≤ 1.

One can easily check that any trajectory of the corresponding closed-loop system, starting at a point of
K \ {B}, B = (3, 2), first loops around P = (4, 2) untill it reaches a point of the strip S = {x : |x2| ≤ 1},
next follows the integral curve of f(x, k2) and thus reaches the ball B1. On the other hand, the trajectory that
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starts at B crosses the strip S at Q = (4, 1) where the two fields f(x, k1), f(x, k2) coincide. Hence it can either
keep following the field f(x, k1) untill it crosses again the strip S, or else can immediately enter the strip S and
thus follow the field f(x, k2). Therefore the closed loop system admits infinitely many trajectories starting at
the point (3, 2). Some of these actually reach the ball B1 in finite time, others keep spinning around the point
P forever.

Let’s implement now our construction of a patchy-feedback for this system. We shall define a feedback that
steers all the states in K into an arbitrary small neighborhood of B1. Fix some 0 < ρ � 1 and then, for any
0 < χ� 1, define a feedback law Uχ = Uχ(x) by setting

Uχ(x1, x2) =

k1 if
(
1 + χ+ ρ

)
−
χ

T
· x1 ≤ |x2|,

k2 if |x2| <
(
1 + χ+ ρ

)
−
χ

T
· x1,

where T is some constant > 6. The resulting field g(x) = f
(
x,Uχ(x)

)
is a patchy vector field associated to the

pair of patches
(
Ω1, g1

)
,
(
Ω2, g2

)
, with

Ω1 = R2, Ω2 =
{

(x1, x2) : |x2| <
(
1 + χ+ ρ

)
−
χ

T
· x1

}
,

g1(x) = f(x, k1), g2(x) = f(x, k2).
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In this case any trajectory γ of

ẋ = g(x) (4.37)

that starts at a point in K, after looping around P crosses transversally the boundary of Ω2. As a result, every
Carathéodory solution of (4.37), starting at time t = 0 from a point in K, reaches the ball B

(
0, 1 + (χ + ρ)

)
,

in finite time. Moreover, if we choose the constant χ sufficiently small, one can easily verify that also all the
Carathéodory solutions of the differential inclusion

ẋ ∈ g(x) +B
(
0, χ/2

)
starting from a point in K, reach the ball B

(
0, 1 + (χ+ ρ)

)
in finite time. Thus, such a feedback is robust w.r.t.

small external dynamic perturbations.
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