@article{COCV_1999__4__559_0, author = {Nazaret, Bruno}, title = {Stability results for some nonlinear elliptic equations involving the $p$-laplacian with critical {Sobolev} growth}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {559--575}, publisher = {EDP-Sciences}, volume = {4}, year = {1999}, mrnumber = {1746167}, zbl = {0930.35051}, language = {en}, url = {http://archive.numdam.org/item/COCV_1999__4__559_0/} }
TY - JOUR AU - Nazaret, Bruno TI - Stability results for some nonlinear elliptic equations involving the $p$-laplacian with critical Sobolev growth JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 1999 SP - 559 EP - 575 VL - 4 PB - EDP-Sciences UR - http://archive.numdam.org/item/COCV_1999__4__559_0/ LA - en ID - COCV_1999__4__559_0 ER -
%0 Journal Article %A Nazaret, Bruno %T Stability results for some nonlinear elliptic equations involving the $p$-laplacian with critical Sobolev growth %J ESAIM: Control, Optimisation and Calculus of Variations %D 1999 %P 559-575 %V 4 %I EDP-Sciences %U http://archive.numdam.org/item/COCV_1999__4__559_0/ %G en %F COCV_1999__4__559_0
Nazaret, Bruno. Stability results for some nonlinear elliptic equations involving the $p$-laplacian with critical Sobolev growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999), pp. 559-575. http://archive.numdam.org/item/COCV_1999__4__559_0/
[1] Problèmes isopérimétriques et espaces de Sobolev. J. Differential Geom. 11 ( 1976) 573-598. | MR | Zbl
,[2] Nonlinear Analysis on Manifolds. Monge-Ampere equations, Springer-Verlag ( 1982) (Grundlehren) 252. | MR | Zbl
,[3] Generalized scalar curvature type equations on compact riemaniann manifolds. Preprint of the University of Cergy-Pontoise ( 1997). | MR
,[4] On some nonlinear equations involving the p-Laplacian with critical Sobolev growth. Adv. in PDE's, to appear. | MR | Zbl
and ,[5] On the heat flow for p-harmonic maps with values in S1. Nonlinear Anal. TMA, accepted.
and ,[6] Local and global properties of solutions of quasilinear elliptic equations. J. Differential Equations 76 ( 1988) 159-189. | MR | Zbl
and ,[7] Quasilinear elliptic equations involving critical Sobolev exponentsNonlinear Analysis, Theory, Methods and Applications 13 ( 1989) 879-902. | MR | Zbl
and ,[8] Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth. J. Funct. Anal. 119 ( 1994) 298-318. | MR | Zbl
and ,[9] Weak convergence methods for nonlinear partial differential equations. Conference Board of the Mathematical Sciences 74 ( 1990). | MR | Zbl
,[10] La methode d'isométries-concentration dans le cas d'un problème non linéaire sur les variétés compactes à bord avec exposant critique de sobolev. Bull. Sci. Math. 116 ( 1992) 35-51. | MR | Zbl
,[11] Sobolev Spaces on Riemannian Manifolds, Springer-Verlag ( 1996) (LNM) 1635. | MR | Zbl
,[12] Solutions nodales pour des équations de type courbure scalaire sur la sphère. Preprint of the University of Cergy-Pontoise ( 1997).
,[13] The concentration-compactness principle in the calculus of variations. The limit case, part I. Revista Matematica Iberoamericana 1 ( 1985) 145-199. | MR | Zbl
,[14] The concentration-compactness principle in the calculus of variations. The limit case, part II. Revista Matematica Iberoamericana 1 ( 1985) 45-116. | MR | Zbl
,[15] Stabilité sous des perturbations visqueuses des solutions d'équations du type p-Laplacien avec exposant critique de Sobolev. Preprint of the University of Cergy-Pontoise (5/98).
,[16] Best constants in Sobolev inequalities. Ann. Mat. Pura Appl. 110 ( 1976) 353-372. | MR | Zbl
.[17] Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations 51 ( 1984) 126-150. | MR | Zbl
,[18] A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12 ( 1984) 191-202. | MR | Zbl
,