Input-to-state stability with respect to measurement disturbances for one-dimensional systems
ESAIM: Control, Optimisation and Calculus of Variations, Volume 4 (1999), pp. 99-121.
@article{COCV_1999__4__99_0,
     author = {Chung Siong Fah, Nicolas},
     title = {Input-to-state stability with respect to measurement disturbances for one-dimensional systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {99--121},
     publisher = {EDP-Sciences},
     volume = {4},
     year = {1999},
     mrnumber = {1680756},
     zbl = {0918.93051},
     language = {en},
     url = {http://archive.numdam.org/item/COCV_1999__4__99_0/}
}
TY  - JOUR
AU  - Chung Siong Fah, Nicolas
TI  - Input-to-state stability with respect to measurement disturbances for one-dimensional systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 1999
SP  - 99
EP  - 121
VL  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/COCV_1999__4__99_0/
LA  - en
ID  - COCV_1999__4__99_0
ER  - 
%0 Journal Article
%A Chung Siong Fah, Nicolas
%T Input-to-state stability with respect to measurement disturbances for one-dimensional systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 1999
%P 99-121
%V 4
%I EDP-Sciences
%U http://archive.numdam.org/item/COCV_1999__4__99_0/
%G en
%F COCV_1999__4__99_0
Chung Siong Fah, Nicolas. Input-to-state stability with respect to measurement disturbances for one-dimensional systems. ESAIM: Control, Optimisation and Calculus of Variations, Volume 4 (1999), pp. 99-121. http://archive.numdam.org/item/COCV_1999__4__99_0/

[1] E.D. Sontag, Smooth stabilization implies coprime factorization. IEEE Trans. Automat. Cont. 34 ( 1989) 435-443. | MR | Zbl

[2] R. Freeman, Global internal stabilizability does not imply global external stabilizability for small sensor disturbances. IEEE Trans. Automat. Contr. 40 ( 1996) 2119-2122. | MR | Zbl

[3] R. Freeman and P. Kokotovic, Robust nonlinear control design - state-space and Lyapunov techniques, Birkhäuser, Boston Basel Berlin ( 1996). | MR | Zbl

[4] E.D. Sontag, Mathematical control theory: Deterministic Finite Dimensional Systems, Text in Applied Mathematics 6, Springer-Verlag, New York Berlin Heidelberg ( 1990). | MR | Zbl

[5] C. Samson, Velocity and torque feedback control of a nonholomic cart, in Robot Control, Proc. of the International Workshop on Nonlinear and Adaptive Control: Issues in Robotics, C. Canudas de Wit Ed., Grenoble, France, November 21-23, 1990, Springer-Verlag, Berlin Heidelberg New York, Lecture Notes in Control and Information Sciences 162 ( 1991) 125-151. | MR | Zbl

[6] J.M. Coron, Global asymptotic Stabilization for controllable systems without drift. Math. Control Signals Systems 5 ( 1992) 295-312. | MR | Zbl

[7] J.M. Coron, Stabilization in finite time of locally controllable systems by means of continuous time-varying feedback laws. SIAM J. Contr. Opt. 33 ( 1995) 804-833. | MR | Zbl

[8] J.M. Coron, On the stabilization of controllable and observable systems by an output feedback law. Math. Control Signals Systems 7 ( 1994) 187-216. | MR | Zbl

[9] R. Freeman, Time-varying feedback for the global stabilization of nonlinear systems with measurement disturbances, in Proc. European Control Conference, Brussels ( 1997).

[10] N.N. Krasovskii, Stability of motion, Standford University Press, Standford ( 1963). | MR | Zbl

[11] J.M. Coron, L. Praly and A. Teel, Feedback stabilization of nonlinear systems: sufficient conditions and Lyapynov and Input-output techniques, in Trends in Control, A. Isidori Ed., Springer-Verlag ( 1995) 293-348. | MR

[12] E.D. Sontag and Y. Wang, New characterizations of the input to state stability property. IEEE Trans. Automat. Contr. 41 ( 1996) 1283-1294. | MR | Zbl

[13] Y. Lin, Input-to-state stability for noncompact sets Proc. 13th IFAC World Congress, Vol. E, San Francisco ( 1996) 73-78.