@article{COCV_1999__4__99_0, author = {Chung Siong Fah, Nicolas}, title = {Input-to-state stability with respect to measurement disturbances for one-dimensional systems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {99--121}, publisher = {EDP-Sciences}, volume = {4}, year = {1999}, mrnumber = {1680756}, zbl = {0918.93051}, language = {en}, url = {http://archive.numdam.org/item/COCV_1999__4__99_0/} }
TY - JOUR AU - Chung Siong Fah, Nicolas TI - Input-to-state stability with respect to measurement disturbances for one-dimensional systems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 1999 SP - 99 EP - 121 VL - 4 PB - EDP-Sciences UR - http://archive.numdam.org/item/COCV_1999__4__99_0/ LA - en ID - COCV_1999__4__99_0 ER -
%0 Journal Article %A Chung Siong Fah, Nicolas %T Input-to-state stability with respect to measurement disturbances for one-dimensional systems %J ESAIM: Control, Optimisation and Calculus of Variations %D 1999 %P 99-121 %V 4 %I EDP-Sciences %U http://archive.numdam.org/item/COCV_1999__4__99_0/ %G en %F COCV_1999__4__99_0
Chung Siong Fah, Nicolas. Input-to-state stability with respect to measurement disturbances for one-dimensional systems. ESAIM: Control, Optimisation and Calculus of Variations, Volume 4 (1999), pp. 99-121. http://archive.numdam.org/item/COCV_1999__4__99_0/
[1] Smooth stabilization implies coprime factorization. IEEE Trans. Automat. Cont. 34 ( 1989) 435-443. | MR | Zbl
,[2] Global internal stabilizability does not imply global external stabilizability for small sensor disturbances. IEEE Trans. Automat. Contr. 40 ( 1996) 2119-2122. | MR | Zbl
,[3] Robust nonlinear control design - state-space and Lyapunov techniques, Birkhäuser, Boston Basel Berlin ( 1996). | MR | Zbl
and ,[4] Mathematical control theory: Deterministic Finite Dimensional Systems, Text in Applied Mathematics 6, Springer-Verlag, New York Berlin Heidelberg ( 1990). | MR | Zbl
,[5] Velocity and torque feedback control of a nonholomic cart, in Robot Control, Proc. of the International Workshop on Nonlinear and Adaptive Control: Issues in Robotics, C. Canudas de Wit Ed., Grenoble, France, November 21-23, 1990, Springer-Verlag, Berlin Heidelberg New York, Lecture Notes in Control and Information Sciences 162 ( 1991) 125-151. | MR | Zbl
,[6] Global asymptotic Stabilization for controllable systems without drift. Math. Control Signals Systems 5 ( 1992) 295-312. | MR | Zbl
,[7] Stabilization in finite time of locally controllable systems by means of continuous time-varying feedback laws. SIAM J. Contr. Opt. 33 ( 1995) 804-833. | MR | Zbl
,[8] On the stabilization of controllable and observable systems by an output feedback law. Math. Control Signals Systems 7 ( 1994) 187-216. | MR | Zbl
,[9] Time-varying feedback for the global stabilization of nonlinear systems with measurement disturbances, in Proc. European Control Conference, Brussels ( 1997).
,[10] Stability of motion, Standford University Press, Standford ( 1963). | MR | Zbl
,[11] Feedback stabilization of nonlinear systems: sufficient conditions and Lyapynov and Input-output techniques, in Trends in Control, A. Isidori Ed., Springer-Verlag ( 1995) 293-348. | MR
, and ,[12] New characterizations of the input to state stability property. IEEE Trans. Automat. Contr. 41 ( 1996) 1283-1294. | MR | Zbl
and ,[13] Input-to-state stability for noncompact sets Proc. 13th IFAC World Congress, Vol. E, San Francisco ( 1996) 73-78.
,