@article{COCV_2000__5__175_0, author = {Szolnoki, Dietmar}, title = {Viability kernels and control sets}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {175--185}, publisher = {EDP-Sciences}, volume = {5}, year = {2000}, mrnumber = {1744611}, zbl = {0940.93009}, language = {en}, url = {http://archive.numdam.org/item/COCV_2000__5__175_0/} }
Szolnoki, Dietmar. Viability kernels and control sets. ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 175-185. http://archive.numdam.org/item/COCV_2000__5__175_0/
[1] Viability Theory. Birkhäuser ( 1991). | MR | Zbl
,[2] Infinite time optimal control and periodicity. Appl. Math. Optim. 20 ( 1989) 113-130. | MR | Zbl
AND ,[3] Some aspects of control systems as dynamical systems. J. Dynam. Differential Equations 5 ( 1993) 469-494. | MR | Zbl
AND ,[4] The Dynamics of Control. Birkhäuser ( 2000) to appear. | MR | Zbl
AND ,[5] A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer. Math. 75 ( 1997) 293-317. | MR | Zbl
AND ,[6] Reachable Sets, Control Sets and Their Computation. Dissertation, Universität Augsburg, "Augsburger Mathematische Schriften Band 7" ( 1996). | MR | Zbl
,[7] Qualitative Theorie Nichtlinearer Stochastischer Systeme. Dissertation, Universität Bremen ( 1980).
,[8] Nonlinear Dynamical Control Systems. Springer-Verlag ( 1990). | MR | Zbl
AND ,[9] Approximation of the viability kernel. Appl. Math. Optim. 29 ( 1994) 187-209. | MR | Zbl
,[10]Set-valued numerical analysis for optimal control and differential games ( 1998) to appear. | Zbl
,[11] Berechnung von Viabilitätskernen. Diplomarbeit, Institut für Mathematik, Universität Augsburg, Augsburg ( 1997).
,[12] On the dynamic behavior of continuous stirred tank reactors. Chem. Engrg. Sci. 19 ( 1974) 967-985.
, AND ,