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THE BRACHISTOCHRONE PROBLEM WITH FRICTIONAL FORCES

Roberto Giambò
1

and Fabio Giannoni
2

Abstract. In this paper we show the existence of the solution for the classical brachistochrone problem
under the action of a conservative field in presence of frictional forces. Assuming that the frictional
forces and the potential grow at most linearly, we prove the existence of a minimizer on the travel
time between any two given points, whenever the initial velocity is great enough. We also prove the
uniqueness of the minimizer whenever the given points are sufficiently close.
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1. Introduction

The classical formulation of the brachistochrone problem dates back to 1696, when Johann Bernoulli, from
the pages of the review “Acta Eruditorum” directed by Gottfried Leibniz, challenged the mathematicians of the
time to find the shortest travel time path of a particle moving between two fixed points in a vertical plane of
the space, under the influence of the gravity force.

An earlier formulation had actually been given by Galileo in 1638, although he suggested an arc of circle
as the brachistochrone curve. A correct solution of the problem was provided, among the others, by Jakob
Bernoulli and Isaac Newton, besides Johann Bernoulli himself, and it is well know today that the curve solution
of the problem is an arc of cycloid.

In the generalization that we will study in this paper we consider an arbitrary potential energy U , that
will be a function on a given manifold M, and a reaction force R of the medium in which the particle moves,
depending on the velocity v of the particle itself.

We will denote byM an n-dimensional smooth manifold, n > 1, endowed with a Riemannian structure 〈 ·, · 〉.
Let us fix the starting and arrival points p and q on M (we assume p 6= q), and the initial velocity v0 > 0. For
sake of simplicity the particle will be supposed to be of unit mass. The arc length function is given by

`(τ) =
∫ τ

0

√
〈 ẋ(σ), ẋ(σ) 〉dσ, (1)

where x(σ) : [0, 1]→M is the path from p to q expressed in parametric form. Hereafter the dot notation will
mean derivative with respect to the parameter.
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The velocity is given by

v =
d`

dT
, (2)

where T is the (absolute) time function that we want to minimize. For our study it will be convenient not to
choose T as the parameter; in other words the velocity v will be considered as an “additional” coordinate, in
such a way that

R× (M× R+)

will be our configuration space. From (1) and (2) we obtain the functional

T (x, v) =
∫ 1

0

√
〈 ẋ(τ), ẋ(τ) 〉
v(τ)

dτ. (3)

Balancing the forces acting along an infinitesimal path d` we obtain

dv

dT
= −dU

d`
−R, (4)

where U = U(x) is the potential energy and R = R(v) is the frictional force. The left-hand side term can be
written as

dv

dT
=
dv

d`

d`

dT
=
dv

dτ

dτ

d`
v =

v̇

d`/dτ
v

and then, multiplying both members in (4) by d`
dτ we get

vv̇ = −dU
d`

d`

dτ
−Rd`

dτ
= −〈DU(x), ẋ 〉 −R

√
〈 ẋ, ẋ 〉,

that is the constraint equation

Φ(x, v) = v(s)v̇(s) + 〈DU(x(s)), ẋ(s) 〉+ R(v(s))
√
〈 ẋ(s), ẋ(s) 〉 = 0 (5)

(cf. [5]). Here DU is the gradient of the potential energy,

dU(x)[ξ] = 〈DU(x), ξ 〉, ∀ξ ∈ TxM,

and TxM obviously denotes the tangent space ofM at the point x ∈ M. Let us observe that integration of (5)
yields the conservation of the total energy of the system,

1
2
v(s)2 + U(x(s)) +

∫ s

0

R(v(σ))
√
〈 ẋ(σ), ẋ(σ) 〉dσ =

1
2
v2

0 + U(p) = E, (6)

where E is the total energy of the particle of unit mass at the initial time. Last addendum in the left-hand side
term of (6) is obviously the energy dissipated by the reaction force R(v).

Thus we can formulate the following:

Definition 1.1. Given p, q ∈ M and v0 > 0, a (minimal) brachistochrone of energy E = 1
2v

2
0 + U(p) from p

to q is a couple of curves (x(s), v(s)) that minimizes the functional (3) among all the couples of smooth curves
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that

x : [0, 1]→M, x(0) = p, x(1) = q,

v : [0, 1]→ R+, v(0) = v0,

Φ(x, v) = 0 in [0, 1].

(7)

In Theorem 2.1 we prove that, for any couple of points p and q in a complete Riemannian manifold M there
is a brachistochrone joining p and q. This is done assuming that the frictional force and the potential have a
growth not more than linear (cf. (10) and (11)). Moreover we obtain the differential equation satisfied by the
brachistochrone curves. It is given by (15) where the couple of smooth curves (x, v) satisfies also (14) and the
constraint equation (5). To prove Theorem 2.1 one could also try to use the “action functional”

A(x, v) =
∫ 1

0

〈 ẋ, ẋ 〉
v2

ds

analogously to the problem of Riemannian geodesics between two given points. This is actually possible although
there are some technical problems due to the fact that the constraint equation does not describe a smooth
manifold, because of the presence of a square root. Indeed we can approximate the constraint by a sequence of
smooth manifolds described by the differential equation

vv̇ + 〈DU(x), ẋ 〉+R(v)
√
〈 ẋ, ẋ 〉+ ε2 = 0

and where the functional A achieves its minimum value since it is bounded from below and it satisfies the
Palais-Smale compactness condition (as we can see using the same methods employed to derive the differential
equation for the brachistochrones). Then sending ε to 0 we can obtain the existence of a smooth minimizer for
A satisfying the conservation law (14), as in the Riemannian geodesic problem.

However, to obtain the existence of a (minimal) brachistochrone we think that the direct use of T and the
constraint equation (5) (both of them invariant by reparametrizations) is a little easier: although the constraint
is not in general closed with respect to the week convergence it is possible to show that a (reparametrized)
minimizing sequence possesses a subsequence weakly convergent to a couple (x, v) satisfying the constraint
equation (5).

The action functional could be very useful to find multiple critical points, but actually their meaning is
not completely clear. Indeed, although we have an uniqueness results for minimizers whenever p and q are
sufficiently close (see Prop. 3.1), it is not clear if we can consider a curve satisfying (15) as a brachistochrone (as
we can do in the case without friction). This is due to the fact that equation (15) is not an ordinary differential
equation, but an integro-differential equation where the behaviour of (x, v) at the instant s ∈]0, 1[ is influenced
by an integral evaluated in all the interval [s, 1]. In particular we can not say in principle that along a solution
of (15), if x(s1) and x(s2) are sufficiently close (and s1 < s2), then x|[s1,s2] is a minimizer of T (along curves
defined in the interval [s1, s2]). Anyway thanks to the Palais-Smale condition for the action functional, it is
possible to obtain multiplicity results for its critical points.

For the brachistochrone problem in a relativistic stationary spacetime (corresponding to the classical
autonomous case without friction) the reader is referred to [2, 3, 6], where the employed techniques allow to
deal also with the classical autonomous case.

2. Existence of brachistochrones

Let us consider a complete Riemannian manifoldM of dimension n. Our functional framework will be given
by the product of Sobolev spaces

H1,p([0, 1],M)×H1,p([0, 1],R+), 1 ≤ p ≤∞. (8)
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Here we recall that H1,p([0, 1],Rn) consists of all the absolutely continuous curves γ(s) : [0, 1]→ Rn such that
γ̇(s) is in Lp([0, 1],Rn). H1,p([0, 1],M) can instead be defined in terms of local charts (U,ϕ) of M, U ⊂ M ,
ϕ : U → Rn,

H1,p([0, 1],M) = {z : [0, 1]→M : ∀(U,ϕ) local chart ofM,

∀I = [t1, t2] ⊆ [0, 1] : I ⊆ z−1(U) ⇒ ϕ ◦ z ∈ H1,p(I,Rn)}·

Anyway, for our purposes, we will actually suppose, by Nash embedding theorem [4], that M is embedded in
the Euclidean space RN , for some N , in such a way that M inherits the Riemannian structure of RN . In this
way the spaces

Lp([0, 1],M),

used throughout the paper, are well defined.
Let p, q be two fixed point of the Riemannian manifold M (we suppose p 6= q); in order to find the minimal

brachistochrone, defined in [0, 1], from p to q, we recall that the constraint equation satisfied by x(s) and v(s)
is

Φ(x, v) = vv̇ + 〈DU(x), ẋ 〉+R(v)
√
〈 ẋ, ẋ 〉 = 0 a.e. , (9)

where DU is the gradient of the potential energy U : M → R, and R : R+ → R+ is a non negative function
depending on v that represents the frictional force.

Here we assume that both U and R are smooth, and moreover

R(0) = 0, lim sup
v→∞

R(v)
v

< +∞, (10)

and

lim sup
dM(x,p)→∞

−U(x)
dM(x, p)

<∞, (11)

where dM(·, ·) is the Riemannian distance in M.
Let us choose a constant ∆ > 0 and an initial velocity v0 ≥ ∆. The space of curves in which we first search

the minimum is

Λ ={(x, v) ∈ H1,1([0, 1],M)×H1,1([0, 1],R+) : x(0) = p, x(1) = q,

v(0) = v0, v(s) ≥ ∆, Φ(x, v) = 0 a.e. }·
(12)

The main theorem we will prove in this section is the following:

Theorem 2.1. Under the assumptions (10) and (11), and fixed ∆ > 0, there exists a positive constant
v∗(p, q,∆) such that for every v0 ≥ v∗ there is a minimal brachistochrone, defined in [0, 1], from p to q with
initial velocity v0 and v(s) > ∆, ∀s ∈ [0, 1].This means that there exists a couple of smooth curves (x, v) ∈ Λ
such that

T (x, v) =
∫ 1

0

√
〈 ẋ(τ), ẋ(τ) 〉
v(τ)

dτ = inf
Λ
T (13)

parametrized in such a way that √
〈 ẋ(s), ẋ(s) 〉
v(s)

≡ C(x, v) = const. in [0, 1]. (14)
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Moreover, the brachistochrone (x, v) is a couple of C2 curves that satisfies equation (5) and the following equation:

Ds

[(
1

(v(s))2
+

P (s)R(v(s))
v(s)

√
〈 ẋ(s), ẋ(s) 〉

)
ẋ(s)

]
+

d

ds

(
P (s)
v(s)

)
DU(x(s)) = 0, (15)

where Ds is the covariant derivative along the direction ẋ(s), and P (s) is the following scalar function depending
on x(s) and v(s):

P (s) = v

[
e
R s
0 R
′(v)

√
〈 ẋ,ẋ 〉
v dσ

∫ 1

s

〈 ẋ, ẋ 〉
v4

e−
R σ
0 R′(v)

√
〈 ẋ,ẋ 〉
v dρdσ

]
(16)

where R′ denotes the derivative of R with respect to v.

Remark 2.2. It can be easily seen that, if (9) and (15) hold for some C2 curves (x, v), then (x, v) is a critical
point of T parametrized in such a way that (14) holds. Indeed, expanding expression (15) we have[
−2v̇
v3

+
d

ds

(
P

v

)
R√
〈 ẋ, ẋ 〉

+
P R′(v)v̇
v
√
〈 ẋ, ẋ 〉

− P R(v)
v

〈Dsẋ, ẋ 〉
〈 ẋ, ẋ 〉

3
2

]
ẋ+

[
1
v2

+
P R(v)
v
√
〈 ẋ, ẋ 〉

]
Dsẋ+

d

ds

(
P

v

)
DU = 0.

Making the scalar product of the left-hand side term of the above expression with ẋ and using the constraint
equation (5) we get

−2v̇
v3
〈 ẋ, ẋ 〉 − d

ds

(
P

v

)
vv̇ +

P R′(v)v̇
v

〈 ẋ, ẋ 〉+
1
v2
〈Dsẋ, ẋ 〉 = 0. (17)

But from (16) we have

d

ds

(
P

v

)
= R′(v)

√
〈 ẋ, ẋ 〉
v

e
R s
0 R
′(v)

√
〈 ẋ,ẋ 〉
v dσ

∫ 1

s

〈 ẋ, ẋ 〉
v4

e−
R r
0 R
′(v)

√
〈 ẋ,ẋ 〉
v dρdr − 〈 ẋ, ẋ 〉

v4
·

Substituting this expression in (17), with a little algebra we obtain

1
v2
〈Dsẋ, ẋ 〉 −

2v̇
v3
〈 ẋ, ẋ 〉 = 0,

that is

〈 ẋ(s), ẋ(s) 〉
[v(s)]2

≡ const. (18)

Remark 2.3. Let (x, v) a critical point for T , and (a, b) ⊂ (0, 1). Let p1 = x(a), q1 = x(b), v1 = v(a), and
consider the functional

Ta,b(y, w) =
∫ b

a

√
〈 ẏ, ẏ 〉
w

dτ, (19)

among all the curves (y, w) such that y(a) = p1, y(b) = p2, w(a) = v1, and

1
2
w(s)2 + U(y(s)) +

∫ s

a

R(w(σ))
√
〈 ẏ(σ), ẏ(σ) 〉 dσ =

1
2
v2

1 + U(p1). (20)
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Then the couple
(
xa,b = x|[a,b], va,b = v|[a,b]

)
satisfies

Ds

[(
1

(va,b(s))2
+ λa,b(s)

R(va,b(s))√
〈 ẋa,b(s), ẋa,b(s) 〉

)
ẋa,b(s)

]
+
dλa,b(s)
ds

DU(xa,b(s)) = 0, (21)

where

λa,b(s) =

eR sa R′(va,b)
r
〈 ẋa,b,ẋa,b 〉

va,b
dσ
∫ b

s

〈 ẋa,b, ẋa,b 〉
v4
a,b

e
−
R σ
a
R′(va,b)

r
〈 ẋa,b,ẋa,b 〉

va,b
dρ
dσ

 , (22)

that is the equation for critical points of Ta,b. Note that λ0,1 · v yields P (s) of expression (16).
Here we stress the fact that the parameter used does not represent time and then the choice of the interval

[0, 1] in the formulation (3) is purely arbitrary, although it obviously has to be consistent with Definition 1.1.

For our aim, we will prove several lemmas in this section; we will first show that the class Λ is not empty
(Lem. 2.4), and then we will use a minimizing sequence in Λ that we will show (Lem. 2.6) to be uniformly
bounded in the space

H1,∞([0, 1],M)×H1,∞([0, 1],R+). (23)

We will them show the existence of a minimizer of T in the set Λ belonging to the space (23), that can be
reparametrized in such a way that (14) holds (Lem. 2.7).

Then, in order to write Lagrange’s equation, we will also show that the velocity curve v(s) is strictly bounded
away from ∆ for an opportune choice of the initial value v0 (Lem. 2.9). At the end of the section the regularity
of the solution (Lem. 2.11) and Lagrange’s equation (15) will be proven.

We now start the proof by showing the following:

Lemma 2.4. There exists a constant v∗ such that ∀v0 ≥ v∗ the class Λ is not empty.

Proof. Let z(s) be the curve in M that minimizes the Riemannian distance from p to q; for each choice of v0

there exists a solution w(s) of the Cauchy problem{
Φ(z, w) ≡ wẇ + 〈DU(z), ż 〉+R(w)

√
〈 ż, ż 〉 = 0,

w(0) = v0.
(24)

From the constraint equation, written as in (6),

1
2
w2(s) + U(z(s)) +

∫ s

0

R(w(τ))
√
〈 ż(τ), ż(τ) 〉 dτ = E, (25)

where

E =
1
2
v2

0 + U(p), (26)

we have, for some constant a1,

1
2
w2 ≤ E − U(z) ≤ a1 +

1
2
v2

0, (27)

and then

w ≤ v0 + a2 (28)



THE BRACHISTOCHRONE PROBLEM WITH FRICTIONAL FORCES 193

for some constant a2. Using (10, 25, 26) and (28) we also have, for some constants a3, a4,

U(p) +
1
2
v2

0 ≤
1
2
w2 + (a3v0 + a4) + U(z),

thus

1
2
w2 ≥ 1

2
v2

0 − a3v0 + a5,

where a5 is another constant. Note that all the constants here considered are independent from v0. From the
above relation we can conclude that

inf
[0,1]

w −→
v0→∞

∞ (29)

and then, fixed ∆ > 0, Λ 6= ∅ for some v∗ opportunely chosen.

Remark 2.5. By the way, it is easily seen from

inf
Λ
T ≤

∫ 1

0

√
〈 ż, ż 〉
w

dτ ≤ 1
inf
[0,1]

w

∫ 1

0

√
〈 ż, ż 〉dτ

that

inf
Λ
T ≤ b1

v0 + b2
, (30)

for some constants b1, b2 depending on p, q and U . In particular

inf
Λ
T −→
v0→∞

0. (31)

These estimates will be useful later in Lemma 2.9.

We now fix v0 as in the previous lemma, and prove the existence of a minimizing sequence belonging to the
space (23).

Lemma 2.6. There exists a minimizing sequence of T consisting of curves (xn, vn) uniformly bounded in

H1,∞([0, 1],M)×H1,∞([0, 1],R+)

and satisfying the constraint equation (9), that is

lim
n→∞

∫ 1

0

√
〈 ẋn, ẋn 〉
vn

= inf
Λ
T (x, v), (32)

vnv̇n + 〈DU(xn), ẋn 〉+R(vn)
√
〈 ẋn, ẋn 〉 = 0 a.e. (33)

Proof. We can suppose the minimizing sequence to be of class C1 . There obviously exists a constant K such
that

T (xn, vn) ≤ K.
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As in (25), we can write

1
2
v2
n + U(xn) +

∫ s

0

R(vn)
√
〈 ẋn, ẋn 〉dτ = E, (34)

and thanks to the assumption (11) made on U we have some constants a, b such that

1
2
v2
n ≤ E − U(xn) ≤ E + a+ b dM(x, p),

holds. Therefore

1
2
||vn||2∞ ≤ E + a+ b

∫ 1

0

√
〈 ẋn, ẋn 〉dτ ≤ E + a+ b||vn||∞

∫ 1

0

√
〈 ẋn, ẋn 〉
vn

dτ

≤ E + a+ bK||vn||∞,
(35)

from which we deduce the existence of a constant d > 0 such that

vn ≤ d, ∀n. (36)

Thus ∫ 1

0

√
〈 ẋn, ẋn 〉dτ ≤ β ∀n, (37)

for an opportune constant β > 0.
Let us now define a sequence of curves yn(s) = xn(λn(s)), where λn(s) solves the Cauchy problemλ̇n(s) =

∫ 1

0 (
√
〈 ẋn, ẋn 〉+ 1)dτ√

〈 ẋn(λn(s)), ẋn(λn(s)) 〉+ 1
,

λn(0) = 0.

(38)

It can be easily seen, with a continuity argument, that there exists sn ∈ R+ such that λn(sn) = 1; indeed, λn
is increasing and if there was not such a sn it would be

lim
s→∞

λ̇n(s) = 0,

and this is absurd due to the upper limitation for the denominator in the right-hand side term of the differential
equation, that holds because ẋn is C0.

From (38) we have∫ sn

0

λ̇n
(√
〈 ẋn(λn), ẋn(λn) 〉+ 1

)
ds =

[∫ 1

0

(√
〈 ẋn, ẋn 〉+ 1

)
ds

]
sn; (39)

then, introducing the variable change

λn(s) = σ

expression (39) becomes ∫ 1

0

(√
〈 ẋn, ẋn 〉+ 1

)
dσ =

[∫ 1

0

(√
〈 ẋn, ẋn 〉+ 1

)
dσ

]
sn,
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giving

sn = 1. (40)

Then λn(s) is a reparametrization of [0, 1], and from (37) the curves yn are uniformly bounded; differentiating
yn and using (37) again we obtain

ẏn = ẋn(λn)λ̇n ≤ (β + 1)
ẋn(λn)√
〈 ẋn, ẋn 〉+ 1

, (41)

thus the curves yn are uniformly bounded in the H1,∞-norm. Now, setting

wn(s) = vn(λn(s)), (42)

we have

ẇnwn + 〈DU(yn), ẏn 〉+R(wn)
√
〈 ẏn, ẏn 〉 =

[
v̇nvn + 〈DU(xn), ẋn 〉+R(vn)

√
〈 ẋn, ẋn 〉

]
λ̇n,

and so the couple (yn, wn) satisfies the constraint equation (9) and then it belongs to Λ. From the expression
of the constraint itself it can also be seen that wn are uniformly bounded in the H1,∞-norm, and in conclusion,
since T is invariant by reparametrizations, the sequence (yn, wn) is a minimizing sequence in H1,∞.

We are now ready to show the existence of a minimal brachistochrone.

Lemma 2.7. There exists a minimizer (x, v) of T in the set Λ, reparametrized in such a way that (14) holds
almost everywhere.

Proof. By the above lemmas we can suppose there exists a sequence of curves (xn, vn), uniformly bounded in
H1,∞, and uniformly converging to a couple (x, v). We first have to show that (x, v) is the required minimizer.

Since the curves vn are uniformly bounded away from zero we have∫ 1

0

√
〈 ẋn, ẋn 〉
vn

dτ −
∫ 1

0

√
〈 ẋn, ẋn 〉
v

dτ −→
n→∞

0; (43)

but the L∞ uniform boundness of ẋn and v̇n implies (we recall that we work in a local chart, by Nash theorem [4])

ẋn ⇀ ẋ inL1([0, 1],RN),

v̇n ⇀ v̇ inL1([0, 1],R),
(44)

and then ∫ 1

0

√
〈 ẋ, ẋ 〉
v

dτ ≤ lim
n→∞

inf
∫ 1

0

√
〈 ẋn, ẋn 〉
v

dτ (45)

(cf. [1]). Combining (43) and (45) we obtain

T (x, v) ≤ inf
Λ
T, (46)

and so we still have to show that the couple (x, v) satisfies almost everywhere the constraint equation (9) to
prove that the equality holds in (46).



196 R. GIAMBÒ AND F. GIANNONI

For every closed interval [t1, t2] ⊂ [0, 1] we have

0 =
∫ t2

t1

v̇ndτ +
∫ t2

t1

R(vn)
vn

√
〈 ẋn, ẋn 〉dτ +

∫ t2

t1

〈
DU(xn)
vn

, ẋn

〉
dτ, (47)

and, using (44), it follows that∫ 1

0

χ[t1,t2]

(
v̇ +

R(v)
v

√
〈 ẋ, ẋ 〉+

〈
DU(x)
v

, ẋ

〉)
dτ ≤ 0, (48)

where χ[t1,t2] is the characteristic function of the interval [t1, t2], and then

v̇(s) +
R(v(s))

v

√
〈 ẋ(s), ẋ(s) 〉+

〈
DU(x(s))
v(s)

, ẋ(s)
〉
≤ 0, a.e. in [0, 1]. (49)

We define now the curve w solution of the Cauchy problemẇ = −R(w)
w

√
〈 ẋ, ẋ 〉 −

〈
DU(x)
w

, ẋ

〉
,

w(0) = v0.

(50)

The function w is defined in the interval [0, 1] and is such that

w(0) = v(0),

then, by a simple comparison argument in ODE, it is

w(t) ≥ v(t) ∀t ∈ [0, 1]. (51)

But if the strict equality held in (51) it would be

T (x,w) <
∫ 1

0

√
〈 ẋ, ẋ 〉
v

dτ ≤ inf
Λ
T,

and since (x,w) ∈ Λ (recall that w(s) ≥ ∆, ∀s ∈ [0, 1]) we would obtain a contradiction. Then

v = w

and (x, v) ∈ Λ. We have showed the first part of the lemma.
Let us now define, ∀ε > 0 the curve

xε(s) = x(λε(s)), (52)

where λε solves the Cauchy problem 
λ̇ε(s) =

∫ 1

0

√
〈 ẋ,ẋ 〉
v dτ + ε√

〈 ẋ(λε(s),ẋ(λε(s)) 〉
v(λε(s))

+ ε

λε(0) = 0.

(53)
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Since
√
〈 ẋ(λε(s),ẋ(λε(s)) 〉

v(λε(s))
+ ε is uniformly bounded, whenever s ∈ [0, 1], with a similar argument as in

Lemma 2.6 it can be shown that

λε(1) = 1;

moreover, differentiating both terms in (52) and using (53) it can be easily seen that the curves xε are uniformly
bounded in the H1,∞ norm, then there exists a curve z such that

xε−→
ε→0

z inL1
(
[0, 1],RN

)
,

ẋε ⇀
ε→0

ż inL1
(
[0, 1],RN

)
.

(54)

If we now define vε to be the solution of the Cauchy problemv̇ε = −R(vε)
vε

√
〈 ẋε, ẋε 〉 −

〈
DU(x)
vε

, ẋε

〉
,

vε(0) = v0,

(55)

we find

vε(s) = v(λε(s)),

because they both solve the same Cauchy problem. Then the curves vε are uniformly bounded in H1,∞, and
there exists w such that

vε−→
ε→0

w uniformly. (56)

Now √
〈 ẋε, ẋε 〉
vε

=

(∫ 1

0

√
〈 ẋ, ẋ 〉
v

dτ + ε

) √
〈 ẋ,ẋ 〉
v√

〈 ẋ,ẋ 〉
v + ε

,

therefore, ∀s ∈ [0, 1],

lim sup
ε→0

√
〈 ẋε, ẋε 〉
vε

≤
∫ 1

0

√
〈 ẋ, ẋ 〉
v

dτ = inf
Λ
T, (57)

and then, by (54) and (56) we have, for every closed interval [t1, t2] ⊂ [0, 1],∫ t2

t1

√
〈 ż, ż 〉
w

dτ ≤ (t2 − t1) inf
Λ
T. (58)

Arguing as in the first part of this lemma we obtain√
〈 ż, ż 〉
w

≤ inf
Λ
T a.e. in [0, 1], (59)

and as done in (51) we find that w is a subsolution of the Cauchy problemu̇ = −R(u)
u

√
〈 ż, ż 〉 −

〈
DU(z)
u

, ż

〉
,

u(0) = v0;
(60)
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then, if u is the solution of the above problem, we have

u ≥ w ∀s ∈ [0, 1] (61)

and from (59) it immediately follows by integration in [0, 1] that u = v and√
〈 ż, ż 〉
w

= inf
Λ
T a.e. in [0, 1]. (62)

In conclusion (z, w) ∈ Λ is such that (62) holds and

T (z, w) = min
Λ
T. (63)

Remark 2.8. Note that in particular we have√
〈 ż, ż 〉 = v inf

Λ
T ≥ ∆ · inf

Λ
T > 0. (64)

Let us now denote by (x, v) a minimizer of T in Λ reparametrized in such a way that (14) holds. In order to
write Lagrange’s equation, we first show that the velocity curve v(s) is bounded away from ∆ for an opportune
choice of the initial velocity v0. This is achieved by the following:

Lemma 2.9. There exists a constant v∗, depending on ∆ such that, for every v0 ≥ v∗, the couple (x, v) is such
that

v(s) > ∆, ∀s ∈ [0, 1]. (65)

Proof. The constraint equation already used in (25) and (34), yields

1
2
v2 + U(x) ≤ 1

2
v2

0 + U(p), (66)

because R(v) is a non negative function. Using (11) we find, for some constants a and b,

1
2
v2 ≤ 1

2
v2

0 + U(p) + a+ b ||v||∞
∫ 1

0

√
〈 ẋ, ẋ 〉
v

dτ

and then, from (14),

1
2
||v||2∞ ≤

1
2
v2

0 + b||v||∞T (x, v) + U(p) + a,

and so there is a constant h such that

||v||∞ ≤ v0 + h. (67)

We now observe, from (30) and (67), that

1
v0 + h

∫ 1

0

√
〈 ẋ, ẋ 〉 ds ≤

∫ 1

0

√
〈 ẋ, ẋ 〉
v

ds = inf
Λ
T ≤ b1

v0 + b2
, (68)
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and then there exists a compact set K ⊂ M, not depending on the initial velocity v0, such that the curve
x(s) ∈ K. This means that |U(x)| < hU for some constant hU independent from v0. Using again the constraint
equation together with (10) and (11) it follows

1
2
v2

0 + U(p) =
1
2
v2 +

∫ s

0

R(v)
√
〈 ẋ, ẋ 〉dτ + U(x) ≤ 1

2
v2 +

∫ 1

0

vR(v)

√
〈 ẋ, ẋ 〉
v

dτ + hU

≤ 1
2
v2 + h1||v||2∞T (x, v) + hU ,

for some constant h1 depending on R(v). Taking into account (67) we obtain

1
2
v2 ≥

[
1
2
− h1T (x, v)

]
v2

0 + (k1v0 + k2)T (x, v) + k3 (69)

for some constants ki, i = 1, 2, 3. Then, recalling (31) of Remark 2.5, we have

inf
[0,1]

v −→
v0→∞

∞, (70)

and there exists a constant v∗, depending on p, q, ∆ and, of course, on the data R and U of the problem, that
ensures that lemma holds.

Remark 2.10. We observe that it has so far been shown the existence of the minimum in Λ. Actually, the
brachistochrone with initial velocity v0 could not belong to the space Λ, that is there could be (x̃, ṽ) such that

T (x̃, ṽ) < inf
Λ
T, inf

[0,1]
ṽ ≤ ∆.

But the argument of the previous lemma can be repeated, using the first relation above, obtaining a contradiction
with the second one. Then the minimizer in Λ is actually the sought brachistochrone.

Let us now complete the proof of the main theorem.

Proof of Theorem 2.1. By Lemma 2.9 if (x, v) is a minimizer we have∫ 1

0

δ

(√
〈 ẋ, ẋ 〉
v

)
[ζ, ω] = 0 (71)

for every couple (ζ, ω) of C1 admissible variations such that ζ(0) = ζ(1) = 0 and ω(0) = ω(1) = 0. More
precisely, thanks to the Nash embedding theorem we can assume thatM is embedded in some RN and 〈 ·, · 〉 is
the Euclidean structure of RN . Therefore, since v(s) > ∆ for any s ∈ [0, 1] and (x, v) is a minimizer we have:

0 = lim
ε→0

∫ 1

0

1
ε


√〈

ẋ+ εζ̇, ẋ+ εζ̇
〉

v + εω
−
√
〈 ẋ, ẋ 〉
v

 dτ

= lim
ε→0

∫ 1

0

(√〈
ẋ+ εζ̇, ẋ+ εζ̇

〉
−
√
〈 ẋ, ẋ 〉

)
ε(v + εω)

−
√
〈 ẋ, ẋ 〉

v(v + εω)
ω dτ

= lim
ε→0

∫ 1

0

2
〈
ẋ, ζ̇

〉
+ ε
〈
ζ̇ , ζ̇

〉
(v + εω)

(√〈
ẋ+ εζ̇, ẋ+ εζ̇

〉
+
√
〈 ẋ, ẋ 〉

) − √
〈 ẋ, ẋ 〉

v(v + εω)
ω dτ,
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where we use v > ∆, (14) (satisfied a.e.) and the fact that the variations are C1. Recalling Lebesgue theorem
on dominate convergence for ε→ 0, the above expression becomes

∫ 1

0

〈
ẋ, ζ̇

〉
v
√
〈 ẋ, ẋ 〉

−
√
〈 ẋ, ẋ 〉
v2

ω dτ = 0.

Observing that ẋ ∈ TxM and introducing the covariant derivative Ds in M along the direction ẋ(s), in the
above expression we can use the projection Dsζ of ζ̇ on TxM, from which, using (14) again, it is easily seen
that ∫ 1

0

〈 ẋ,Dsζ 〉
v2

− 〈 ẋ, ẋ 〉
v3

ωds = 0. (72)

In order to find the admissible variations, we first observe that the constraint is only given by

Φ(x, v) = 0, (73)

because the strict inequality in (65) of last lemma showed that the velocity curve v(s) is bounded away from ∆
for v0 greater than some opportune constant v∗. From (73) we have

0 = dΦ(x, v)[ζ, ω] = ωv̇ + vω̇ +
〈
HU (x)[ζ], ẋ

〉
+ 〈DU(x), Dsζ 〉+R′(v)ω

√
〈 ẋ, ẋ 〉+R(v)

〈 ẋ,Dsζ 〉√
〈 ẋ, ẋ 〉

, (74)

where HU(x) is the Hessian of U , that can be defined in terms of any geodesic curve γ(s) such that γ(0) = x
and γ̇(0) = ξ:

〈
HU(x)[ξ], ξ

〉
=
(
d

ds

)2

U(γ(s)), (75)

and R′(v) denotes the derivative of R with respect to the argument v. Defining

A(x, v, ζ) =
1
v

(〈
HU (x)[ζ], ẋ

〉
+ 〈DU(x), Dsζ 〉+

R(v)〈 ẋ,Dsζ 〉√
〈 ẋ, ẋ 〉

)
,

B(x, v) =
v̇ +R′(v)

√
〈 ẋ, ẋ 〉

v
,

(76)

we find that ω is the solution of the Cauchy problem{
ω̇(s) +B(x(s), v(s))ω(s) = −A(x(s), v(s), ζ(s)),

ω(0) = 0,
(77)

and then

ω(s) = −e−
R
s
0 B(σ)dσ

∫ s

0

A(r)e
R
r
0 B(σ)dσdr. (78)

Substituting (78) into (72) gives

0 =
∫ 1

0

〈 ẋ,Dsζ 〉
v2

− 〈 ẋ, ẋ 〉
v3

ω ds =
∫ 1

0

〈
ẋ

v2
, Dsζ

〉
+
〈 ẋ, ẋ 〉
v3

e−
R s
0 Bdσ

(∫ s

0

A(r)e
R r
0 Bdσdr

)
ds. (79)
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If we define α(s) to be the function

α(s) =
〈 ẋ, ẋ 〉
v3

e−
R s
0 Bdσ, (80)

last addendum in the right-hand side term of (79) simplifies as follows:∫ 1

0

α(s)
∫ s

0

A(r)e
R r

0 B(σ) dσdr ds =
∫ 1

0

A(r)e
R r
0 B(σ)dσ

∫ 1

r

α(ρ)dρ dr =
∫ 1

0

P (s)A(s)ds, (81)

where P (s) is the positive and continue function

P (s) = e
R
s
0 B(σ)dσ

∫ 1

s

α(σ)dσ. (82)

It is easily seen that P (s) has the form (16). The following lemma now shows the regularity of the minimizer
(x, v).

Lemma 2.11. The minimizer (x, v) of T in Λ is C2.

Proof. We will exploit a bootstrap argument; in view of (80, 81) and (82) we have in (79), for ω = 0,∫ 1

0

〈(
1
v2

+
PR

v
√
〈 ẋ, ẋ 〉

)
ẋ−H(s), Dsζ

〉
ds = 0, (83)

where

H(s) = −P (s)
v(s)

DU(x(s)) +
∫ s

0

P (σ)
v(σ)

HU (x(σ))[ẋ(σ)]dσ; (84)

then, using (14), we obtain (
1
v2

+
P R

C v2

)
ẋ = H+ χ, (85)

where C denotes the constant in (14), and χ is a function such that

Dsχ = 0.

Then, from the coordinate expression of Dsχ it can be easily seen that χ̇ is L1 and then χ is continue.
Observing that the coefficient of ẋ in (85) is bounded away from zero and that, from (14) and (16),

P (s)
v(s)

= C2eC
R s
0 R
′(v(σ))dσ

∫ 1

s

1
[v(σ)]2

e−C
R σ
0 R′(v(ρ))dρdσ

is a C1 function (84) and (85) ensures that ẋ is C0 and then x is C1. This implies the following facts: first,
H and χ are C1 (to prove the second fact we need again the coordinate expression of Dsχ), and, taking into
account the constraint equation written as

v̇ = −1
v
〈DU(x), ẋ 〉 − C R(v), (86)

where again (14) has been used, v̇ is C0 and then v is C1. From (85) again we have that ẋ is C1 and then, from
the constraint (86), v̇ too is C1, obtaining the desired regularity.
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We are now ready to write Lagrange’s equation and to conclude the proof of Theorem 2.1. This is easily
achieved using (79), that can be written as follows:∫ 1

0

〈
ẋ

v2
, Dsζ

〉
+
P

v

〈
HU(x)[ẋ], ζ

〉
+
P

v

〈
R(v)ẋ√
〈 ẋ, ẋ 〉

+DU(x), Dsζ

〉
ds = 0, (87)

and we straightforwardly obtain equation (15) by a simple integration by parts.
The proof is complete.

3. Uniqueness of local minimizers

In this section local uniqueness of critical points of the functional (3) satisfying the constraint equation (5)
will be studied. Let us fix p, q, which will be considered sufficiently close, and let us fix v0 > 0. With the
position

z(t) = ẋ(t) (88)

equation (15) is written as

Ds

[(
1
v2

+
λR√
〈 z, z 〉

)
z

]
+ λ̇ DU(x) = 0, (89)

where

λ(s) =
P (s)
v(s)

= e
R s
0 R
′(v)

√
〈 z,z 〉
v dσ

∫ 1

s

〈 z, z 〉
v4

e−
R σ
0 R′(v)

√
〈 z,z 〉
v dρdσ (90)

and v = v(x(s), z(s)) functionally depends on (x, z) by means of the constraint equation rewritten as

1
2
v2 +

∫ s

0

R(v)
√
〈 z, z 〉dτ + U(x) =

1
2
v2

0 + U(p). (91)

Since we want to consider brachistochrone curves joining p with a close point q we can work in a local chart of
p and set p = 0. With such a fixed coordinate system, (89) becomes[(

1
v2

+
λR√
〈 z, z 〉

)
z

]′
= Γ(x)

[
z,

(
1
v2

+
λR√
〈 z, z 〉

)
z

]
− λ̇ DU(x) = 0, (92)

where Γ(x) is the bilinear form induced at the point x by the Christoffel symbols of the metric 〈 ·, · 〉.
Let us now consider the map

F : C0([0, 1],R2n)× Rn → C0([0, 1],R2n)

that sends the point (z, x, w) into the couple of functions (F1(z, x, w), F2(z, x, w)), where

F1(z, x, w) =

(
1
v2

+
λR√
〈 z, z 〉

)
z −

(
1
v2

0

+
λ(0)R(v0)√
〈w,w 〉

)
w −

∫ t

0

Γ(x)

[
z,

(
1
v2

+
λR√
〈 z, z 〉

)
z

]
+ λ̇ DU(x) dτ,

F2(z, x, w) = x−
∫ t

0

z dτ.

(93)
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Clearly, if (z, x, w) belongs to F−1(0, 0), then the couple (x(s), v(s)) satisfies equation (15), besides obviously
equation (5) (see (91)), and then it is a critical point for the functional (3) such that v(0) = v0, ẋ(0) = w.
Moreover, since

λ̇ = R′(v)

√
〈 z, z 〉
v

λ− 〈 z, z 〉
v4

, (94)

using (90) and some easy estimates on the expression λ√
〈 z,z 〉

, it is possible to see that F is C1 and F (0, 0, 0)

= (0, 0). Note that we also use the fact that

v(s) −→
(x,z)→(0,0)

v0 > 0. (95)

To study the dependence of (x, z) on w , for w sufficiently small, we will prove that the Jacobian

∂F

∂(x, z)
(0, 0, 0) : C0([0, 1],R2n)→ C0([0, 1],R2n) (96)

is invertible. For this aim, let us make a preliminary consideration. We have said that, in (93), v must be seen
as a function of the couple (z(s), x(s)). Formally differentiating the constraint equation (91) in the direction
(z, x), we obtain

V +
1
v

∫ s

0

R′(v)
√
〈 z, z 〉V dτ +

[
1
v

∫ s

0

R(v)
〈 z, ζ 〉√
〈 z, z 〉

dτ + 〈DU(x), ξ 〉
]

= 0, (97)

where

V = dv(z, x)[ζ, ξ], (98)

and observing that the expression in square parentheses in (97) is uniformly bounded (see also (95)), from
Gronwall’s lemma we get

||V ||∞ ≤ ν (99)

for some constant ν, and hence v is uniformly Lipschitz continuous with respect to (z, x). Let us define the
following quantity:

Ω(z, x, w)[ζ, ξ] = d

[(
1
v2

+
λR√
〈 z, z 〉

)
z

]
[ζ, ξ] =− 2

v3
V z +

Rz√
〈 z, z 〉

dλ(z, x)[ζ, ξ] +R′(v)V
zλ√
〈 z, z 〉

+
λR√
〈 z, z 〉

〈 z, ζ 〉
〈 z, z 〉z +

(
1
v2

+
λR√
〈 z, z 〉

)
ζ;

(100)
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then we have (see (94))

∂F1

∂z
(z, x, w)[ζ] +

∂F1

∂x
(z, x, w)[ξ] = Ω(z, x, v)[ζ, ξ] +

{∫ t

0

dΓ(x)[ξ]

[
z,

(
1
v2

+
λR√
〈 z, z 〉

)
z

]

+ Γ(x)

[
ζ,

(
1
v2

+
λR√
〈 z, z 〉

)
z

]
+ Γ(x)[z,Ω] + dλ̇(z, x)[ζ, ξ]DU(x)

+λ̇〈DU(x), ξ 〉dτ
}

+
R(v0)dλ(0)[ζ, ξ]√

〈w,w 〉
w.

(101)

Using some elementary estimates it is easily seen that, evaluating (101) at (z, x, w) = (0, 0, 0), we get

∂F1

∂z
(z, x, w)[ζ] +

∂F1

∂x
(z, x, w)[ξ] =

1
v2

0

ζ, (102)

whereas it is immediate to realize that

∂F2

∂z
(z, x, w)[ζ] +

∂F2

∂x
(z, x, w)[ξ] = ξ −

∫ t

0

ζdτ. (103)

Now the map

∂F

∂(x, z)
(0, 0, 0)[ζ, ξ] =

(
1
v2

0

ζ, ξ −
∫ t

0

ζdτ

)
(104)

is invertible, with inverse given by(
∂F

∂(x, z)
(0, 0, 0)

)−1

[ζ, ξ] =
(
v2

0 ζ, ξ + v2
0

∫ t

0

ζdτ

)
. (105)

Then, by the Implicit Function Theorem, for w sufficiently small there is a C1 map

w 7→ (zw, xw)

such that

F (zw, xw, w) = 0.

Note that the differential of this map at w = 0 is easily computed:

−
(

∂F

∂(x, z)
(0, 0, 0)

)−1 [
∂F

∂v
(0, 0, 0)[ω]

]
= (ω, ω · t). (106)

This shows that, for every w in a neighborhood of 0 of TpM, there exists a unique curve (xw, vw) satisfying (5)
and (15), and such that xw(0) = p, ẋw(0) = w, vw(0) = v0. Moreover (106) shows that the exponential map
expp : TpM→M, defined as

expp(w) = xw(1), (107)

is such that its differential is the identity map on TpM, and then expp is a local diffeomorphism. Thus, if q
is sufficiently close to p, there exists a unique C2 solution (x, v) of (5) and (15) that joins p and q with initial
velocity v0. We have therefore proven the following:
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Proposition 3.1. For every p ∈ M, v0 ∈ R+, there exists a neighborhood of p in M such that for every q in
this neighborhood there exists a unique C2 minimizer of (3) (namely a brachistocrone curve) from p to q with
initial velocity v0.

4. Examples

1. Let us consider the case when the frictional force of the resisting medium is linear,

R(v) = αv, α 6= 0. (108)

Such an R(v) verifies assumption (10); in this case the scalar function P (s) (16) is

P (s) = C2v(s)eαCs
∫ 1

s

1
v(σ)eαCσ

dσ, (109)

where √
〈 ẋ(s), ẋ(s) 〉 = Cv(s),

and equation (15) becomes(
1
v2

+ αCeαCs
∫ 1

s

1
v2eαCσ

dσ

)
Dsẋ+

−
(

2
v̇

v
+
αC

v2
− α2C2eαCs

∫ 1

0

1
v2eαCσ

dσ

)
ẋ+

(
αC3eαCs

∫ 1

s

1
v2eαCσ

dσ − C2

v2

)
DU(x) = 0.

(110)

2. We can observe that the above equation becomes a true differential equation in the frictionless case, that is
when α = 0. Indeed, in this case (110) becomes

Ds

(
ẋ

v2

)
=
C2

v2
DU(x). (111)

We also observe that the constraint equation (11) now gives

v2 = 2(E − U(x)), (112)

and then we recover the equation of the brachistochrone in a conservative force field:

Dsẋ = C2DU(x)− 〈DU(x), ẋ 〉
2(E − U(x))

ẋ. (113)

Note that in absence of potential (113) is the equation of the geodesics inM.
3. As a particular case of Example 2, let us see the solution of the classical problem.

In this caseM = R2, U(x, y) = y, R(v) = 0. Let p = O, the axes origin, and q = (x, y). Then (113) yields

d

ds

(
ẋ

v2

)
= 0,

d

ds

(
ẏ

v2

)
=
C2

v2
· (114)

Using these equations together with (14) and (112) we come to the following equations:

ẋ(t) = a(E − y(t)),

ÿ(t) + a2y(t) + (C2 − a2E) = 0,
(115)
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where E = 1
2v

2
0 , and a, C are constants to determine. With some calculation we find the solution

x(t) =
C2

a2
(a(t+ t0)− sin(a(t+ t0))) +

C2

a2
(sin at0 − a t0),

y(t) =
C2

a2
(cos(a(t+ t0))− 1) +E,

v(t) = 2
C

a
sin
(
a(t+ t0)

2

)
,

(116)

where

cos(at0) = 1−E a2

C2
,

and a, C must be determined using the conditions

x(1) = x, y(1) = y.
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