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THE WAVE EQUATION WITH OSCILLATING DENSITY:
OBSERVABILITY AT LOW FREQUENCY

GILLES LEBEAU!

Abstract. We prove an observability estimate for a wave equation with rapidly oscillating density, in
a bounded domain with Dirichlet boundary condition.
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0. INTRODUCTION AND RESULTS
Let Q be a smooth bounded domain in R?, and p(x,%) a smooth function on R? x R?, such that
0 < pmin < p(2,Y) < pmax ¥ (2,9) (0.1)
p is 2m-periodic with respect to the second variable, i.e.
plz,y) = p(x,y+2ml) VL7, (0.2)

For ¢ > 0, let (wS,ef(z)) be the spectrum of the Dirichlet problem for the operator —p~!(z,z/¢)A, on
L2 (; p(z, z/€)dgz) normalized in the form

pla,z/e)(wy,)? eg,(2) = —Ages, (2) in 2
es(x) =0 on 0f) (0.3)
fQ efz(‘r)esm(l‘)p(xvx/g)dg‘r = 6n,m§ 0< WT < WS <...

Here, A, denotes the Laplace operator for some fixed smooth metric g on Q, and dgx is the volume form
associated to g.

For any given 79 > 0, we shall denote by JZ  the space of solutions uf(t,z) of the wave equation with
oscillating density p

{(p(m,x/s)@f —Ag)u(t,z) =0 inRy xQ (0.4)

us(t, ) |zcon0 =0
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with maximum frequency less than vy /e.
In other words, J5  is the set

5, = u(t, @) = Z (U+77leitwa + u_me—ithL) e (z) b - (0.5)

ews <70

Let {uj*} be a bounded sequence (in L (R, L*(£2)), of solutions of (0.4), with lim e, = 0. It is well known

that any weak limit of this sequence will satisfy the homogenized wave equation in €2

{(Bix)ag — Agu(t,z) =0 inRxQ 06)

u(t,r)zcon =0
where p(x) = ¢ p(z,y)dy is the mean value of p.
Let V' be an open subset of €2, and T > 0.

One says that waves solution of (0.6) are observable from V in time T} if there exists a constant Cy s.t for
any L2-solution of (0.6) one has

/OTO/Q|U(t,x)|2£($)dtdgx§Co /OTO/V|u(t,x)|2£(x)dtdgx. (0.7)

If u= Y uy,e*™nre,(z) is the Fourier series of u in the spectral decomposition of (—p)~!(z)A,, we deduce
N

from the elementary fact

T
VT > 0,Ywy > 0,3C > 0 such that Yw > wo, | ey |* + | c_ |?< C/ | cre™ +c e ™ |2 dt
0

that the condition (0.7) is equivalent to the following

3Co s.t. V(ug pyu—n)n € 02 x 02

S g nl? + fueaf? < Co I [, lu(t, @) Pp(a)dtdya. 0.8)
n
It is proved in [4] that (0.7) holds true under the geometric-control hypothesis
1) there is no infinite order of contact between the boundary
00 and the bicharacteristics of p(2)07 — A, (0.9)

2) any generalized bicharacteristic of p(2)0? — A,
parameterized by ¢t €]0,Tp[ meets V.

Here the generalized bicharacteristic flow is the one defined by Melrose and Sjéstrand in [11].
The main result of this paper is the following theorem, which asserts that the estimate (0.7) remains true

under the hypothesis (0.9) for p(z), for solutions of (0.4) in J5 , if 7o is small enough.

Theorem 0.1. Let the hypothesis (0.9) be satisfied. There exist small positive constants vo,e0 and a constant
Co, such that for any e €]0,¢0[ and any u® € J5,

To To
/0 /Q|u5(t,x)|2p(x,x/s)dtdgx§ CO/O /V|u5(t,x)|2p(x,x/€)dtdgx. (0.10)
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This is clearly a stability result of the observability estimate (0.7) under the singular perturbation
p(x) — p(x,z/e). Let us recall that Theorem 0.1 has been proved in the 1-d case by Castro and Zuazua [6], and
that in the 1-d case, the counter-example of Avellaneda et al. [1] shows that (0.10) fails for o large. Indeed, in
the 1-d case, when p = p(z/¢), Castro [5] has shown that the greatest value of 4o such that (0.10) holds true
for some Ty (when V' € [a,b] = Q) is related with the first instability interval of the Hill equation on the line

2
((%) +w?p(y). In the multi-d case, the understanding of the best value of 7o such that (0.10) holds true will
clearly involve the understanding of the localization and propagation of Bloch waves for the boundary value
problem (0.4): this highly difficult problem is out of the scope of the present paper.

The conserved energy for solutions of (0.4) is

Ew®) = %/Q{|8tu5|2p(x,x/s) + |Vgu5|2} dgz . (0.11)

Applying the estimate (0.10) to 0,u®, one easily gets the energy observability estimate

Corollary 0.1. Under the hypothesis and with the notations of Theorem 0.1, there exists a constant Cy s.t. for
any € €]0,e0[ and any u® € J5, one has

To
B(uf) < Cy / / 10, 2 (v, 3 €) b,y (0.12)
0 1%

The paper is organized as follows:

1. reduction to a semi-classical estimate;

the Bloch wave;

Lopatinski estimate;

propagation estimate;

Appendix A: semi-classical o.p.d with operators values;
Appendix B: proofs of Lemmas 3.4-3.6.

A e

1. In the first part, using a Littlewood-Paley decomposition, we reduce the proof of the inequality (0.10) to the
assertion

there exist o, €0, ho, Co such that for any e €]0, o[, and

h € [e/70, ho| the inequality (0.10) holds true for any u® € I, (0.13)
0.13

where If =< uf = S (upn ™ fu e el (x)
0.9<wgh<2.1

2. In the second part, we introduce the Bloch wave at the boundary I'(u®). We refer to [2] and [7] for the study
of Bloch waves in equations with oscillating coefficients. We choose a coordinate system

O x [0, 7] —2 RY
{ (z',2q) HO@(x',xd) (0.14)

which satisfies

i) ©(92 x [0,70]) C
ii) for x4 small , x4 — ©(2', 24) is the geodesic normal to the (0.15)
boundary at 2’ € 9Q , for the metric g on .
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In these coordinates, the Laplace operator takes the form

(0= (i o) o

x=(2',2q), ' € 0Q

where A;(x,0,/) are differential operators of order j on 9, with x4 as parameter. Let a;(z,{’) be the principal
symbol of A;. The dual metric g~ (z, &) def |€]I2 on the cotangent bundle T*( is

€13 = ao(2)&5 + a1(x,€")éa + az(,€). (0.17)
Let T¢ = (R/27Z)? be the d-dimensional torus and for £ > 0, Sc C 9 x [0, 7] x ']I‘Z the submanifold
Se ={(z,9); y = ©(z)/e mod (27Z)*} - (0.18)

Let f(z) be a function on 9 x [0,7]. We define a distribution T'(f) on 9Q x [0, 7] x T¢ by the formula

T(f) = 0@/ f(z) = 2m)6,—0(x)/e ® f(2). (0.19)
Lezd

If X is a vector field on 99Q x [0, 7], we shall denote by X the lift of X on S.. If 2’ = (z1,...,24-1) is a local

coordinate system on 012, and (©1(x),...,0q(x)) = O(z) are the Cartesian coordinates of ©, one has
o\ o 1o 0
_ = 1= - —_— <k< .
(3%)5 8$k+5; o @ g, Prl<k<d (0.20)
and
o\" 0
— | T(f)=T|(+— for1 <k<d. 21
(&Ck)s (f) (8mk ) orl1 <k<d (0.21)

The Bloch operator on 9Q x [0, 7] x T? is defined by

Be(,€0x,201y,0y) = pl@,y)(e0h)? — £2(Ag)% 3 plw,y) = p(O(2),y)
{ (82 = (52) (A0(a) () + Ao (@00)2) + A (2, (00)2). 022
It satisfies the identity
Be (T(u(x,1))) = *T((p(O(x), O(2)/€)0} — Ag) (u(x,1))). (0.23)
Let A; be the operators
Aj = A, (0)7) (0.24)
and let ex(z) 1 < k < d be the vectors of R?
enla) = 22 (). (0.25)
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If v(t,z,y) is a distribution on X x T?, with X =R, x (9 x [0,7¢]), we shall write the equation B.(v) = 0 as
a 2 x 2 system for the vector w = A(v).

wo | def |V
A(v) = = . ~ . 0.26
=[] = [lasoeators + i) (020
This system takes the form
€ 81 w+Mw=0
_ lea(®) -0y + AT )AL —AN (@) | (0.27)
24y — pla,y)(ed)?  eala) -,
The operator M will be seen as a semi-classical operator in t, x, = ¢, £0; = 7 with operator values in the

fiber T¢

M:i:()ijf T:Y,0y) . (0.28)
3=0

The differential degree in y of MV is at most 2 — j and the principal symbol MC is the matrix

- _ [ea(®) -0y + ag'(z)as(z,i€ + € (2) - 8y)  —ag'(x)] .
M (€', 5, 0y) = [ag(x,if'—l—e'(a(c))-8y)1+ﬁ(x,y)7'2 eal2) - 0, (0.29)

Let E* = {E*, s € R} be the scale of Hilbert spaces on the torus
E* = H*(T%) @ H*~H(T%). (0.30)

For any p = (x,¢',7), M?(p, y, 0,) maps E® into E5~1%J and M is an elliptic operator. Let M be the restriction
of MY to the zero section ¢ =7 = 0.

ca(x) 0y + ag'ai(z,¢'(x) - 9y)  —ag ()

0 - MP° =
M (2, 0y) = M°(,0,0,y,0,) = as(z, ¢ (z) - 9,) eq(z) - Oy

(0.31)

The eigenvalues )\(i’g(x) of %Mg(x, d,) on the space e*YC2, for ¢ € Z¢ are the complex roots of the equation

ao(x) (=X + eql)? + (=X +eg.l)ar(z, e’ .0) +ax(z, e’ .£) =0 (0.32)
which is equivalent to
[*dO()(£) = A(0,---,0,1)[|Z = 0. (0.33)
In particular we have
. . 0
12f min AL ¢(z)] >0 (0.34)

so the double eigenvalue XY, ;(z) = 0 is isolated in the spectrum of M{(z, d,).

In the sequel, we shall restrict the values of the Sobolev index of regularity s on the torus to some fixed large
interval, s € [—oy9, 00, 09 > 4.
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Let X = 0Q x R; x [0,70]. We denote by 'T*X the tangential cotangent bundle
T X = T*(9 x Ry) x [0, 7o) (0.35)

Let W1 € Wy be two small neighborhoods of the set {¢/ = 7 =0} x {t € [-Tp,2Tp]} in 'T*X.
We choose a non-negative function xo € C§°(Wy), such that xo =1 on Wj.
If Wy is small enough, we define the map po(x,t,&,7) : E* — C? by the formula
1 dz
= Xo- — —_ E? - 0.36
polw] = Xo ]{N{%W/BDZ_MO}[UJ] we E*, s€[—og,00] (0.36)

(where D C C is a small disk with center z = 0).
It satisfies the estimates

ACVs € [—0g,00) Vw € E° ||po(w) — XO% wllc2 < 07'2|"LU| Bs (0.37)
’]I‘d

and there exists L(z,t,&',7) € C°(YT*X; M3(C)), defined near ¢’ = 7 = 0 such that (see (2.29-2.31))
pooM® =L%0pg. (0.38)
By a Taylor expansion near £ = 7 = 0, one gets

[ et @a(@ig)  —ag(@)
L= [az?x, i&’) 1—|—é(x)7—2 00 +0 (). (0.39)

We then suitably quantize the above construction and we obtain tangential pseudo differential operators
(see Append. Al)

Ho(E,t,$,€at,68m/) : LZ(X;ES) - LQ(Xv(Cz)v s € [_00700] (O 40)
L(e,t,x,e0;,e0,) : L*(X;C?) — L2(X,C?) ‘
with principal symbol o(Ily) = po, o(L) = LY, which satisfy the relation
Iy(€0z, + M) = (€05, + L)p + R(e, t, x,e0;, €05). (0.41)

In (0.41), the error term R : L?(X; E®) — L?(X,C?) will be a tangential pseudo differential operator such that
for any tangential o.p.d. @ with essential support in Wi and any s € [—0y9, 0¢], one has

1Q o R; L*(X; B®) — L*(X, C?)|| € .0(™). (0.42)

Definition 0.1. For u® € I, we define the Bloch wave I'(u®) € L?(X;C?) by the formula

Py = L)) o T(wf) (T = AoT). (0.43)
Fl(u )
Let 70,€0, ho be given small enough, € €]0,e0|, h € [g/v0,ho]. For u. € Ij, u® = S (ug petten

0.9<ws h<2.1
e~ )es (z), we define [[uc| (g A |u5|2> by

lwsl? = > Jugnl® A+ u (0.44)
0.9<ws h<2.1
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Let X7, = 09Q x [—To, 2Tp] x [0,70], and let K be the compact subset of T*X, K = 0Q x [0,Tp] x [0,70/2]
x{¢ = 0,7 = 0}. The following proposition will be proven in Section 2.

Proposition 0.1. Let Q(e,t,x,£0,,€0:) be a zero order tangential opd on X, equal to Id near K. If vo,€0, ho
are small enough, there exists a constant C' > 0, such that for any e €]0,e0], h € [e/70, ho], one has

[u[* < C1QT0 ()2 (xz) + 16 T2 00y x vy | VU € I (0.45)

3. By Proposition 0.1, we shall obtain the inequality (0.10), if we are able to estimate the L? norm of the first
component I'g(u®) of the Bloch wave near the set K.
The formula (0.41) shows that I'(u®) satisfies the equation

(€0,, + L)T'(uf) € O(e>* L?) (microlocally in W7). (0.46)

By (0.39) this equation is very closed to the homogenized equation (p(x)87 — Ag)[To(u®)] = 0.
As one can see, all the difficulty in our problem is thus to obtain an estimate on the first Dirichlet data of

I'(u®) on the boundary x4 = 0, in order to apply propagation arguments to the equation (0.46). We shall prove
the following proposition.

Proposition 0.2. If vp,e0,ho are small enough, there exists a constant C such that for any e €]0,¢e0],
h € [g/70, ho] the following estimate holds true

ITo(4") zg=0ll L2z, nzg=0) < Ce/hl[w"]| Vu® € L. (0.47)

14
The above estimate will be obtained as a consequence of a uniform Lopatinski estimate on w® = 7 (uf) = {wo] .

We shall prove

Theorem 0.2. Let Q be a scalar tangential o.p.d. with essential support in Wy; if Wo,v0,€0, ho are small
enough, there exist s1 < 0 and a constant C' such that for any u® € Ij the following estimate holds true

||Q(t’ x,€0,, Eat)(wi)\zd:OHLz(XToﬂacd:O,Hb'l (T4)) < CHUEH (0-48)

Notice that w® satisfies the equation (0.27), with Dirichlet data W, —o = 0 on the boundary.

The weaker estimate
1Q(wS)za=oll < Ce™/2||uf| (0.49)

is easy to obtain (it is sufficient to commute the Eq. (0.4) with the normal vector field ).
The proof of (0.48) is the most technical part of our work. It involves a detailed study of how the spectral
theory of M°(x, &, 75y, dy) (see (0.29)) depends on the parameter (z,&’, 7).

4. This part will be devoted to the proof of the following proposition.

Proposition 0.3. Let Q(g,t,2,£0,/,0;) be a zero order opd equal to Id near K, with essential support in W7.
There ezist Yo, €0, ho, and a constant Cy such that, for any € €]0,e0], h € [e/70, ho] and u® € I}, the following
estimate holds true
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1@To(W) B (xay) < Co [IT0(u ) mmollZaxrnamo) + 16 120, 7xv ] - (0.50)

This estimate will be obtained by rather classical arguments in the theory of control of linear waves, for the

rescale equation
(1t ) ] ~o )= )
L= (0 h(/)s> o Lo ((1) s?h) '

We shall verify that £ is still a h-pseudo differential operator, with £/h as parameter. (We use this rescaling in
order to be able to use propagation arguments in the range ¢ < h.)

(0.51)

m|§‘

5. In Appendix A.1, we recall the properties of the semi-classical calculus with operators values which is used
in 2. In Appendix A.2, we extend this calculus to a larger class of symbols; this exotic calculus will be used
in 3.

To end this introduction, we finally remark that the validity of (0.13), hence the proof of Theorem 0.1, is a
direct consequence of the Propositions 0.1, 0.2 and 0.3.

1. SEMI-CLASSICAL REDUCTION

In this part, we verify that (0.13) implies the Theorem 1.

Let €5 (x) be a normalized eigenfunction of the Dirichlet problem (0.3), and let p; be the first eigenvalue of
the Dirichlet problem for Ay in £ . One has

[ VoeiPdga = [ plaa/o) @i Pl @Pdys < puas(i? [ 1650 dy (1)
Q Q Q

So we get the uniform lower bound

€

— 1/2
w5 > (pmax) "2y (1.2)

The Sobolev spaces L2(2), H3(Q), H (), with norms ([, |f|?pdgx)'/?, ([o |Vgfl?dex)/?, sup{ [, fhpdyz,
|hllzy < 1} are characterized in terms of Fourier series by

= [, fes(x)pdgz for f € HL(Q)
||f||L2 = U 173 = SRR 11 = St IfE. (13)

n

Any solution u of the wave equation (0.4) with data (u®(0), ;u®(0)) € L*(Q) ® H~1(Q) is of the form

ut = un (e (@) =) (uf per ot e e (2) (1.4)

n

with (u%,)n € £%, and (1.2) implies that there exists a constant C' independent of €, s.t.

1 1> TO £ 1>
Gl < [ W Ppdtdge < 0N ik (15)
n,+ 0 Q n,+



THE WAVE EQUATION WITH OSCILLATING DENSITY: OBSERVABILITY AT LOW FREQUENCY 227

If the geometric hypothesis (0.9) holds true for Ty, it remains valid for Ty — 24, for § > 0 small enough; we can
therefore assume that (0.13) is valid on [6, Ty — d].

Take ¢(t) € C§°(]0,To]), ¢(t) = 1 on [0, Ty — 4] and ¢ (o) € C§°(]0.9,2.1]), (o) = 1 on [1,2]. Let x(o)
= (o) + ¢ (—0). For uf € J , one has x(27"D;)u® € I5_,, so there exists Cy s.t.

Ve €]0,e0], Vk € Ns.t. 27% € [/0, ho]

Vus= Y (uf e +ul , em i) e (x) € JS
ews <o (16)

Y fu P s P < Co [T dt [, dgxlp(t)x (27 Dyus .
ngw;SQk*l
On the other hand,using classical estimates as in ([9], Sect. 4), one gets 3C1, Co, ko s.t. for any k; > ko, and
any u® € J5
+o00 To
> / dt/ lp(t)x (27" Dy)us Pdga < 01/ / uPdga + Co272F (> " fug | - (1.7)
k>ky Y T v 0o Jv -

Let v1 = 70/2; for u® € J5 and 27k < &/~ one has x(27¥D;)u® = 0, so putting together (1.6) and (1.7) we get

Jng, 3Cs, Ve €]0,e0], Yu© € J5,

(1.8)
DORN (G o S G L o (foTO dt [,y dgx|u? + 37 |ui,n|2>
n>ng,ews <1 n<ng
and (1.8) is equivalent to
dng, 3Cy,Cs, Ve 6]0,60] ,Vu® € J,?l
T ]2 To ]2
Jo JolutPpdtdgz < Cs [ [, [u®?pdtdgx (1.9)

n<ng

+C4y ( Z |u3—,n|2 + |u6—,n|2> :

It is now easy to conclude the proof of Theorem 1 by a uniqueness argument. In fact if (0.10) is untrue, there
exist a sequence €, — 0 and u** € J=* such that fOTO Jo [uf* Ppdtdgz = 1 and fOTO [y luss[Ppdtdgz — 0; let u be
a weak limit in L? of {u®*}; u satisfies

2 — =
{B(x)atu Agu=0 on Ry x (1.10)

uan =05 ujjo,ro[xv =0
and from the observability inequality (0.7), we get « = 0. Then (1.9) implies that u = 0 is the strong limit in
L? of u¥*, which contradicts fOTO Jo lusk Ppdtdge = 1.
2. THE BLOCH WAVE

We shall now recall how one can quantize the principal symbols maps pg, L° defined in (0.36, 0.38) in order
to obtain the pseudo differential relation (0.41).
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Let

I= [—0'0,0'0]. (21)

For any s € I, we split £° = H*(T?) @ H*~1(T?) into the decomposition

E* = Ey& FES Ey =C?
0 D 1 0 (22)
w = W) FtwL wo = f,ﬂ.d w.
In other words we write w = 3" w(y) € and w1 = Y w) V.
[ (#0
We then construct tangential pseudo differential operators defined near €0y = it = 0, €0y = i€ = 0

semi-classical in €

Ao(e,x,e0,60,) @ L*(X,Ey) — L3*(X, A E?) (2.3)
A (e,1,60;,60,) : L*(X,B}) — L*(X,E*) (Vs€l) (2.4)
L(g,2,e0;,€0,) : L*(X,Ey) — L*(X,Ep) (2.5)
Li(e,2,04,e0,) : L2(X,E}) — LA(X,ESY) (Vsel) (2.6)

k
Z(%) Ak(x,7,6') A5 bounded from Ey to SQIES (2.7)
e\* k s s
Z (z) Ak (z,7,¢") A% bounded from E3  to E® (Vscl) (2.8)
k
Z(f)kLk L¥ bounded from F, E 2
: (x,7,&) ounded from FE, to Ey (2.9)
k
e\k k s—1
Z (—) LY (z,7,¢) L% bounded from ES  to B ' (Vsel) (2.10)
i
k

such that near the zero section 7 = ¢ = 0, the two following identities hold true, in the algebra of tangential
pseudo differential operators

(e 52 +M) Ay = Ao (0s, + L)
(2.11)

(e 52 +M) AL = Ay (edy, +L1).

2 . .
Using the formula (0.28) M = 3 (5)’M/(x,&’, 7;y,0y), and the rules of composition of pseudo differential
i=0
operators, one gets that (2.11) is equivalent to the following set of equations (2.12, 2.13)

MO A = AQLO

k=0 (2.12)
{MO A% = A9 LY
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Y hogWiogAf+io, AT = Y HogAjonLt
JH+|al=k , . e+ o=k (2.13)
Y Hogwi oo Al +io,, AN = HogahosL.
jHi+|al=k o=k
Let jo and j, be the inclusion maps
B B B4 pe (2.14)
and let my = mo(x,¢’,7) be the spectral projector of M°, which is defined near (¢, 7) = (0,0), by
1 d
m=g5- | (2.15)

"~ 2im Jop 2z — MO

where D C C is a small disk with center at z = 0.
The range of 7y is a two-dimensional invariant subspace of MY, and by the definition formula (0.29) of M°,
one gets for |7| small enough

H% 7T0j0 —IdEO
Td

In order to obtain the relations (2.12), it is clearly sufficient to select isomorphisms

< Ctet?; ||moji; B — Ef|| < Ctet?. (2.16)

AY : Eg =  range (m) (2.17)
AY ¢ B = range (Id — 7). '
We can choose in view of (2.16), for |7| small enough
A(i :(Id—']TO)jJ_ (218)
AY = mojoc

where o = a(x, 7,¢’) is the unique endomorphism of Ey, such that

?f A :?{ Tojoa = Idpg,. (2.19)
Td Td

(This choice of AY will insure the consistency with the definition (0.36) of py.)

The maps L%(z,7,¢') : By — Eo and LY (z,7,¢') : B — E‘j__l are then uniquely determined by (2.12).
LY is a smooth function of (z,7,¢) defined near 7 = ¢ = 0, taking its values in the set of pseudo-differential
operators of order 1 for the scale {E% } on the torus: for any w; € UE? one has

S

M%) (wy) —§1 LY (wy) = MO7o51 (wy) — moj LY (wy) € N ES, (2.20)

S
The map A% = AJ & A9
AO
E*=E, @ E3 X, E° (2.21)
is an isomorphism; by (2.16) it satisfies

|A° — Id||gs < Cte® (Vs €l). (2.22)
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The equation (2.13) is equivalent to

MO Af — AELO — AJLF = RE | RE bounded from Ej to E* (2.23)
MO Ak — AR L0 — AS LK = R%Y | RY bounded from Ef to ES~! ’
where the right hand side is given by induction by the formula
1 ; 1 ; _ -
k>1 R, = Y. — 08 A, L - Y — 08 M % AG L — 105, A (2.24)
o=k J+etlal=k
Ak LK £k

Let A¥ = Ak @ Ak | Ak = (A%~'AF | cF = LF @ L% | R¥ = Rf @ R and R* = (A°)"'R;. The
equation (2.23) can be rewritten M? A* — A% £0 — AOLF = R* which is equivalent by (2.12) [M? A% = A° £°]
to L0 AF — AF £y — £F = R*. The matrix form of this equation on Ey @ Ef is

IE R .
LY (AF)g0 — (AF)9o LY = LE + (R%)s
L0(AF)1p = (A)12 L) = (BF)1o (2.26)
LY (AF)pq — (AF)e LY = (RF)q:.

The choice (/Tk)l,l =0, (;1’“)2,2 = 0 gives then L*, L% by (2.25). The unique solvability of (2.26) is a consequence

of (0.34) which implies for |7| + |¢/| small enough

LY is invertible and ||(L)) " B — B[ < C (Vsel) (2.27)
Spectrum (L°%) C {z € C;|z| < Cte(|7| + |¢])} '

Thus, solving the second equation in (2.26) is equivalent to find a linear map u : Fy = C? — ﬂI E$ = E{° such
se
that

u—(L9) touoL? =w (2.28)

where v : Ey — E7° is given and (2.27) implies for || + |¢'| small the existence of a unique solution u to (2.28).
The first equation in (2.26) can be reduced to the second one by taking adjoints.

Remark. We have chosen to work with a fixed interval of regularity on the torus, s € [—0g, o] = I in order to
work in the classical theory of semi-classical (in €) peudo-differential operators with values in bounded operators
between Hilbert spaces. On the other hand, the neighborhood of the zero section 7 = ¢ = 0 where the above
construction applies may depends on 1.

In view of (2.22), the tangential pseudo-differential operator A = Ay @ A, is elliptic near the zero section
7=0,8=0. Let A~! be a pseudo-differential inverse and L =L @ L .

By construction we have (¢0,, + M) A = A (0., + L) near the zero section, and L is diagonal in the
decomposition Ey @ E | . Therefore, one deduces that the following identity holds true near the zero section

ﬁd At (eai —|—M> = (gai —|—L) 3 AL (2.29)
Tq Zd
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If we choose W1 € Wy two sufficiently small neighborhoods of the set {&' = 0,7 = 0} x {¢t € [-T0,27Tp]} in
T*X, and Qo, Q1 two scalars tangentials o.p.d., with SE(Q;) C W;, j = 0,1, such that Qo = Id on W1, we
then get, with

I, © Q, ?( AL (2.30)
Td
d d
My (e=— +M) =(e=— +L) Iy +R (2.31)
O, O,

where R is such that ||Q1 R; L*(X, E®) — L?(X,C?|| € O(™) for any s € I.

The principal symbol pg of Il is easy to compute:

If w= (Id — m)jL(wi) + mojoc(w(e)), one has mo(w) = mojoa(w(g)) and (A°)H(w) = w(g) & w, so we get
$ra(A%)"H(w) = w(oy = (using (2.19)) $r. mojoa(w(e)) = $ra To(w) and we recover the definition formula (0.36)
of po, if one takes xo equal to the principal symbol of Q.

Lemma 2.1. The tangential o.p.d. L ~ > (5)*L*(x,7,¢') satisfies
%

i) L = §.,(Mj=)jo modulo7?
_ . _ 2.32
o (@ @aEiE)  al@], g0 (232
as(x, i) + p(x)? 0 ’
Proof. For i), we observe that 72 is a smooth parameter in the above construction, and that by

formulas (0.27, 0.28), the restriction M|,_¢ is a constant coefficient operator on the torus TZ'

We thus get moj;—0 = $ras Qr=0 = Id, Agjr=0 = Jjo, Aljr=0 = Jji, Ljr=o = $ra(Mjr=0)jo, Lijr=o
= (Id = $ra)jr=0(Mj7—0)jL.

One has ¢, AY = Idg, and AJ = jo + O(7?), so there exists a map 0(z,7%,¢') : By — E, such that
AY = j +7%0. Using (2.12), we get

L= ¢ MP°A) (2.33)
Td
so for any w € Ey
Lo(w) = ¢ Mjo(w) +72 ¢ MG(w). (2.34)
T4 T4
The definition formula (0.29) of M° and (2.34) gives the second part of the lemma. O

For v € I}, we define u® by

u = Bﬂ = [ fo(x)sazdus+6A1(x,8z/)us} (2.35)
and w® = T(uf) = T(u) by
-
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where T is the transformation (0.19):

T(f)(t,w,y) =Y WO f(t ). (2.37)
ez
Then w* satisfies, for sg < —d/2 .
W (t,2,y) € L? ([t1,t2] x 02 x [0,70] 5 [H™(TH)]?) Vti,t2 €R (2.38)
{(5 % +M> w® =0 on RyxdNx]0,ro[xT4 (2.30)
wg\zd:o =0.
We recall that we define the Bloch wave T'(u®) € L?(X;C?) by
e\ _ FO(UE) _ €

Tw) = |:F1(u€):| =TIy o T(u°). (2.40)

Proof of Proposition 1.
(We denote by C various constants which are independent of ¢, h.)

For u® = > (U pe™n du_ pettn)es (x) we put [[uf]|? = 3 [uy n)? +|u_ ,|?. For any t; < to, there
0.9<wsh<2.1
exists a constant C' such that for any €, h and u® € I; one has

to
/ / WV + [hdc Pdtdye < Cf|us]. (2.41)
QJty
Let v = ¢/h; we rewrite (2.41) on the form
ta
/ / eV + |edruf Pdtdye < Cy2 |2 (2.42)
oJu
Let K = 9Q x [0,Tp] x [0,79/2] x {& = 0,7 = 0} and Q(,t,x,e0,,€0;) be a scalar tangential o.p.d. on X,

equal to Id near K.

Let o small such that the geometric control hypothesis (0.9) holds true for Ty — 4, and let Y = 90Q x [a, T}
—a] x [0,70/2]. By (2.42), for v small,the L? norm of u* on Y is concentrated near the set ¢’ = 0,7 = 0 where
Q is equal to Id; so we get

320y < € [1QQ) 2y + (v + )2l - (2.43)
By construction of IIy, one has
Iy = Qo |:% Id+ Ro(Eat) + ER1:| (244)
Td
where Ry are tangential o.p.d. from L?(X; E®) in L?(X; Ey) (s € I). Therefore we get

) - (12) < Chy +ell] (2.45)

L2(X;Eo)
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(here we have used the fact that €0; commutes with T' and is bounded by O(y = ¢/h) on I;). Since QQp is
equal to Id near K, we deduce from (2.43, 2.45), for ~o, ¢ small enough

[uf)|Z2vy < C [IIQFo(uE)H%z(xTO) +(y +e)|lullf?) - (2.46)

We are now ready to prove (0.45) by a contradiction argument. If (0.45) is untrue, there exist sequences
er — 0,7 — 0,hy — 0, hy >ep/vn, ub € IZ’; such that

lutll = 1 ky (12 k)2 (2.47)
klggo QLo (u )HLQ(XTO) + [lu HLz((o,To)Xv) =0. '

Moreover, we can suppose that the weak limit u = weak — lim(u*) exist. Then u satisfies (0.6) and is equal to
0 on (0,7p) x V. By the geometric control hypothesis (0.9) of [4], the estimate (0.7) holds true for u, so we get
u = 0. We deduce from (2.46)

: k

We are thus reduced to an interior problem in €.

Let Z = {x € Q ; dist(x, Q) > ro/4} x R;. We denote by Ml = p(z,y)(e8;)? — £2(A,)? the Bloch operator
on Z, and G° = H*(T?). By the same construction as above, there exist a e-pseudo-differential operator
ﬁo(x,f,T,y,ay) : L*(Z,G*) — L?*(Z,C) and a scalar -0.p.d. z(x,f,T) : L2(Z;C) — L*(Z,C), defined near the
zero section £ = 7 = 0, such that

oM = LTI, + R. (2.49)
The principal symbol of Iy is Yo $ a5 Jop ZL with Yo € CSO(WO),)ZQ =1 on Wi, where W, € W, are two

_ MO
small neighborhood of the set {¢ =7 =0} x {t € [-Tp,2Tp]} in T*Z. The scalar operator L satisfies

E|T:0 = —£2A, modulo 72 (2.50)
B, 7,) = —pla)r® + €] + 0.

L= 3(9) T ¢)

The error terms R in (2.49) is such that for any e-o.p.d. @ with essential support in Wl, one has
Qo R ;L*(Z;G°) — L*(Z;C)|| € O(>) Vs € [0, 00]. (2.51)
Let v*(¢,,y) be the distribution on Z x T¢

o =T(Wh) = etk (¢ ). (2.52)
Lezd

We deduce from (2.50) that (%)25 f £ is an h-o.p.d; writing £9, = £(29,), and using Z—: > 'Y_lk — 00 (2.49,
2.51) we get, for any h-o0.p.d. @ compactly supported in {&, 7} and with support in Z x {t € (—Tp,27Tp)}

|QLI" || 12(2) € O(hP). (2.53)
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By the analogue of (2.45) in the interior case, we also have
ITIov" — QuuP|| L2(znitel-To.2moly) < Clk + €] (2.54)
where @0 is an €-o0.p.d. with principal symbol xq, with essential support in WO.
Let 41 be a h-semi classical measure associated to {u*} (see [8]). (The hypothesis u* € I ny implies that p is
supported in |7| € [0.9,2.1].) From (2.47) and (2.46) we deduce that

M|YﬂZ =0 and MHO,TO[XV =0. (255)

Let v be a h-semiclassical measure associated to ITgv*. Using (2.54) and klim ex/hir =0 we get
— 00

v=xat,z;& =0,7 =0)u. (2.56)
The principal symbol of £ is —p(x)7® + [|€]|? + ~20(7*). In the equation (2.53) we view v, = e/hi as a
small parameter. We can then use the proof of the interior propagation theorem (see [8]) with the additional
parameter ; going to zero. We get from (2.53) that the support of v is contained in the set p(x)72 — ||¢/|* = 0,
and that the support of v propagates along the bicharacteristic flow of B(l’)TQ — |€|I?. Using (2.55, 2.56), and
the hypothesis (0.9) we obtain for 8 small

T, /25,70 /246 = 0- (2.57)

Using (2.41), we get that the sequence u* is h-oscillatory (see [7]), so from (2.57) we deduce

Jim [ 2217, /2570 /2480 = 0-

Then from (2.48), we obtain klim ¥\l L2x (72— 3,10 j2+-8)) = O which contredicts [Ju¥|| = 1. O

3. LOPATINSKI ESTIMATE

3.1. Proof of Proposition 2

We first verify the implication Theorem 2 = Proposition 2. For u® € I, we have

wt = [Zﬂ = [ ;Efo)(sazduf)+sA1(x,az,)uf) } (3.1)

and by (2.44)
I'(u®) = Qo [% w® + Ro(e0y)w® + eleE] . (3.2)
T4

The Dirichlet boundary condition u®|,,—o implies w§|,,—0 = 0, so we get

0

c .
wy |md:0 :| :| 1stcomponent

Lot oy = @o | f, (Raletr) + 2R |
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If one multiplies the equation (0.4) by 63<p(xd)8%d where ¢ € C§°(] —70/2,70/2[) is equal to 1 near the boundary
x4 = 0, and integrates by part, one gets

For any tq,ts,there exist Cs.t. Ve

(3.4)
1600 uf|| L2 (11 1) x00) < Ce™ V2 [luf|| Vu© € If.
Therefore, by (3.1) we get for sg < —d/2
105 zag; L2 (1, 12) x 02 ; H(Ty)|| < Ce™ V2 juc]|. (3-5)

If Ris an o.p.d from L?(X7,ne,_, ; H*(T?)) in L?(X7,ns,_,) , using the classical calculus of Appendix A.1,
we get from the a priori bound (3.5) on the trace w$|,,_,

1Qo, Rlwi|zasy 5 L*(Xtyrwaco)ll < C2 (| (3.6)
If Theorem 2 holds true, we have
1Q0wi loucy 5 L*(Xtyriwacs 5 H™ (TN < Ol (3.7)

Now using the fact that €0y commutes with T" and is bounded by O(y = ¢/h) on I}, (3.3, 3.6, 3.7) and ¢ < hoe/h,
we get (0.47), i.e.

o (u) |eg—o; L2 (Xm, N wa = 0)]| < CF[luf]].

3.2. Proof of Theorem 2

In this part, we work with a family {u®}.,u® € I with € €]0,¢e¢], h € [e/70, ho]; we always assume [Ju®|| < 1.
We first remark that the Theorem 2 is local near any po = (to,x(, 70 = 0,&) = 0) € T*(R; x 99Q). Let Q1 be
a tangential scalar o.p.d equal to Id near pg, and with essential support close to pg, and contained in Wy. By
(2.38, 2.39) we get (see (0.30) for the definition of E*)

(5% +M°) Quur = ¢

, (3.8)
7 = oo + M Q] w — £ 3 MIQuu?
Jj=
and for any sp + 1 < —d/2 and any t1,to

sup [|[Qrw®; L2 ([t ta] x 9Q x [0,70]; B>+ < 400 (3.9)

€
supe |3 L2 ([t1, t2] x 02 x [0,70]; E*°|| < 4-00. (3.10)

€

We define f€, g° by

e (TSN p_(F5\ -_ (%
o= () - () - (%)
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We may assume that f¢ is supported in a small neighborhood U = Uy x [0,71] of (to,xj) in Ry x 9Q x [0, 0],
and we denote by (z1,--- ,24-1) a local coordinate system near z(, in 9. Near the boundary by the choice of

coordinates (0.15), we have ag(z) = 1 and a;(z,&’) = 0, so equation (3.8) may be rewritten as

e 0

22 e 4 NFfe = ¢f
) &vd + f g
eq(x).Dy
N= 2
€ / N e
oale 50+ @)D, o) () eate).D,
with D, = %8%, e (z)Dy = (e1(x).Dy, -+ ,eq—1(x).Dy), we define the trace operators T'ro, T'r1 by

Tro(f7) = f5lea=o Tri(f%) = filea=o-

We have T'ro(f¢) = 0 and we have to prove

If Wo C {|€'| + |7| < ap}, with o small enough, there exist s1,C, s.t.

sup || Tr1(f¢); L*(Uo; H**(T4))|| < C.

For any ¢ € Z%, we define £} and ¢,

lE=eq(x).l, 0 = (er(2).l,- - ,eq_1(x).0).

We have by (32), with ||€2]|? = aa(x, ¢7)
I*do(x)(O)]17 = (€)% + 111>
Let No(z) be the restriction of N to the zero section ' = 7 = 0. We have

|
No,e(7) = W”HQ s € Mz (R)

No(2) (2 dewy) — 5 No (@) (20)e
¢ ¢
and the eigenvalues of Ny ¢(z) are

Mg () = Lo ]| €]l

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

Our strategy of proof of the estimate (3.14) is to split f¢ into two pieces. The first one will be concentrate
near ||¢7|| small, where the spectrum of N is close to the real axis; we shall treat this part by a perturbation
argument on the spectral theory of N. The second one ||£!|| > ¢** > 0 will be handle by elliptic estimates on N.

To achieve this program, we shall use the “exotic” pseudo-differential calculus of Appendice A.2, with
Z = Ry x RZTl X [0,70]z,; to simplify notation we denote by S»™ (resp. B"™) the class of symbols (resp.
operators) defined in (A.15) (resp. (A.17)). The restriction on x4 = 0 of these class of symbols and operators

will be denoted by S&™, B™.
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We first conjugate the equation (3.12) so that the natural scale of space on the torus will be
H* def [HS(Td)]Q.

Let (¢7) = (14 [|¢2||*)'/2. We define the operators A = A(x) and Eg = E¢(x) on the torus by

i 10 i
M) =3 (5 ) G0

Let F* be
Fe = AT(F9)
We have Tro(F°¢) = 0 and by (3.9), and the fact that A=! maps clearly E5t1 in H* we get
sup || F5; L*(U; H™)|| < oo.
€
Lemma 3.1. There exist ¢ € S"0, with

qjer=0,r=0 =0
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(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

such that, for any scalar tangential symbol 0(t,x,7,£") equal to Id nmear the essential support of Q1 and with

support in {|¢'| + |7| < ap}, F* satisfies

e 0 0 0
e _-_" pe E e
S ( 0t (Op(qH) 0))
supe |G LA(U; HE ™ H|| < +oo .

Proof. We conjugate (3.12) by A and we obtain

€9 pe AINAFE = Atge - A1 (D) Fe
1 0xg i \ Oxq

i iy | 0 0 ily
(adi) (%”e )‘%(o %«f@) (ze)e

and |a%d<€;'>| < cte(1 4 |£)?)1/2; therefore (by (3.10, 3.19)) we get

‘We have

supe Y|ATlgt — AL (iA) F& L2(U;H™)|| < 4o0.
€ 7 &vd

(3.25)

(3.26)

(3.27)

(3.28)
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A simple computation gives

0 0
~INA —
A NA—E0+(R 0)

d— (3.29)
o (n555)+ B g (v 5ap) @D + ey (cay

R = Op(&(t) !

with
-1
Op (EB<€;'>) (E Zeei€y> = S0 ety
¢ ¢ ¢

Let 0(t,x,7,£') be a classical tangential o.p.d. with support in {|¢'|+|7| < ap} and equal to Id near the essential
support of Q1. By (3.11) we have

|0p(6)F= — F=; L2 (U, 1) | € O(e™). (3.30)
Therefore we can move R((1 — Op(0)F*¢) from the left to the right of (3.27). So we just have to verify

R o Op(0) = Op(q0) + 6020(?@29)’1 o Op(b) (3.31)

with ¢ € §%0 so that (3.24) holds true, and b € S»!. The b term in (3.31) is defined by [Op(az(z,&') +---] o
Op(#) = Op(B(az + --+)) + €Op(b) and belongs clearly to St*! (there is no loose in the z derivatives of b in
(A.15)). Let x(7,¢&') € C§° equal to 1 for (|7| + |¢']) < 2a9. We define ¢ by

d—1
_ da R
0= (@) |eal@ &)+ 57 (@ €)(es@):-Dy) = pla,y)r? | X €): (3.32)
j=1 "%j

The estimates |ej(x).l] < C*(¢!),j < d—1, and
Yo 3Ca |07 ((6) 7] < CalL+1E)(£) ) (3:33)
implies ¢ € 8", The function as(z,¢’) is quadratic in ¢ so (3.24) follows from (3.32). O
The eigenvalues of Eg = A~"NgA are X ,(x) = €3 £i[|£]||. For any z, the set (e1(x),-- - ,eq(x)) is a basis of

R?, so by the definition (3.15) of £ and ¢, there exist ¢; > 0 such that
[0 — k| 4 1€ — K| > 4ci]0 — K| vz, Vk, € € 7. (3.34)

This implies the following separation property for the spectrum of Eq near the real axis

Lemma 3.2. For any z,{ € Z¢ such that ||¢”]| < c1, one has
dist ({A% 4(@)} ,{ALx(@)}) > 1 VEk £ L. (3.35)
Proof. If (3.35) is false, one has |[{+ — k| < ¢; and
21 = KT < cr, so we get [ — ko | + |15 — K| < 1+ 3ey

in contradiction with (3.34). O
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Let Spo(x) be the spectrum of Eo(z)

Spo(x) = U /\i,z(ac). (3.36)
.0

By (3.21), for A & Spo(z) the resolvant (A — Eg(z))~! is diagonal with respect to the decomposition & e*¥C?2,
¢
(A —Eo(z))"! = ®(A = Eg(z)) ! with
¢

N I ) -
OBl = ey | e e ) (3:37)

Lemma 3.3. For any ¢y > 0, there exist M such that for any x, dist(\, Spo(x)) > co implies
I(A = Eoe(x) 7' < M we. (3.38)

Proof. We may suppose ImX > 0. Then we have [A — A9 ,[|A = X% ,| > ol A — £ +i[|€;]] |, so

A — lr] 1
A T S e
| +,e” —,e| Co

and
wly  _ JITIER
A= AL A= A2 |~ max(co, [1£]])
The lemma follows from these two inequalities by (3.37). O

Let us define E = E(¢, z, 7,£’) by (see (3.25))

E=E,+ (qu 8) . (3.39)

For 3> 0, let 5(x) C Z% be the set
Zp(z) = {L e 2% ||¢7]| < B} (3.40)

and for ¢ € Z4, let y¢(z) be the circle
ve(x) = {2 € C, |z — £} = c1/4} (3.41)

where ¢ is the constant of Lemma 3.2.
Now, we fixe 8, 0 < f < ¢1/4. Then for any = and ¢ € ¥3(x), one has P‘i,z(x) — | < B < c1/4, so the
cigenvalues A}, ,() are the only ones inside the circle y,(x). By Lemma 3.3, one gets

(A —Eo(z)) "' € A vie U )
{ (A = I(éo(ﬂ«“))_l;HO —H| <M } . £e%s (=) (3.42)

We then apply Lemma A.1: ¢ vanishes on £’ = 0,7 = 0 and 6 is supported in |¢'| 4+ || < ap. Therefore, if ag
is small enough, the resolvant (A — E(t, z, 7,£')) ™! exist for any (¢, z,7,&,\) for A € U@EZg(I) ~e(x). Obviously,
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one has

1 / -1 ( ik i
— A—Eo(z dX [ D zpe'™ | = zpe™Y. 3.43
iz | O B s (3 (3.43)

We choose ¢ € C§°(] — 1,1[) equal to 1 on [—1/2,1/2] and we define pro(z), pr(t,z,7,£’) by the formulas

11112
pro(z) [%} dewy} = %}w (H%J ) 2o (3.44)
16017 1 1
i) =30 (150) 2 [ 0-Beane) (3.45)

The next lemma shows that pr is well defined.

Lemma 3.4. There exists a 2 x 2 matriz dpr(t,z,7,&") with entries in S4°, such that

pr = pro + dpr (3.46)
(5p7“|€/:0,7-:0 =0. ’

Proof. See Appendix B.

Let o(t,z) € C5°(U) equal to 1 near (to,z(). We next define Qo(t, z) and Q(¢, z, 7, &) by the formulas, where

(05 = \/1+|¢L]2, and o = 2|s¢| + 2

. o\ 1 0 =) :
vl o0 (55 i (g 70" ot o
, g// 2 1 1
Qtw7,€) = 21/2('46! ) T /W)(A E(t,z,7,&))  (E(t, z, 7, &) — £)d. (3.48)

Lemma 3.5. There exist a 2 x 2 matriz 6Q(t,z, T,&') with entries in S, such that

Q=Qo+Q
3.49
{ 0Qer=0,7=0 = 0. (3.49)
Proof. See Appendix B.
We then define F&® and F&! by
FeR = Op(pr)Fe
{ Fs,] — F?(EDF)‘E,R' (350)

The Lemmas 3.4, A.2, the estimates (3.23) and (3.5), and the assumption ||u®|| < 1 imply

sup HFE’R’I; L*(U; H®0)
€

| < 400 (3.51)
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supel/?||Tro 1 (F&®T); L2(Ug; H (T)|| < +o0. (3.52)
e
Moreover, F 1 satisfies the following elliptic estimate
Lemma 3.6. There exist D(t,2',1,£') € S° such that
supe V2| Tr (F&1) — Op(D)Tro(F&1); L2(Uy; H (T < 4-00.
e

Proof. See Appendix B.

To simplify notations, for A € §%* we define A by A= Op(A), and for ¢¢, a family depending on ¢ in a
norm space B, g° € £*B means supe~%||¢g%; B|| < +00. We denote also by § various symbols in S such that
€

djer=0,-—=0 = 0. We first notice that Tro(F°) = 0 and (3.44) imply Tro(pro(F)) = 0, so by Lemma 3.4 we get
Tro(FoR) = 6Tr (FoR 4+ Fo ). (3.53)
By Lemma 3.6, and the Lemmas A.2 and A.3 on the symbolic calculus, we deduce from (3.53)
Tro(FER) + 6Tr (FER) 4 6Tro(F=1) € e/2L2(Uy, H*o™Y). (3.54)
We have Tro(F!) = —Tro(F&®), so (3.54) may be rewrite as a boundary condition for F&®
(1-8) Tro (F=%) +8Try (F°F) € e'/2L3 Uy, H* ). (3.55)
By Lemma 3.1, F® satisfy the equation

£ eR | mpeR _ eR
{ <9, FF + EFR = @ (3.56)

GoF = pir(GF) + [B, pr] P + £ (0,07 F*.

i

By construction, we have [E,pr|] = 0, so by Lemma A.3 [IE,]%“] € e8%% and from (3.23, 3.26) and Lemma A.2
we deduce

G=® e e L2 (U, H>?). (3.57)

For u(z,y) € L2(U, H®),v(z,y) € L*(U, H~*) let (u|v) be the duality

b= [ ([ oot nay ) as (3.59)
U \J1d
and let us define J : L?(U, H®) — L*(U, H?®) by
Uo(ﬂ?,y) Ul(.]?,y)
J = . 3.59
(Ul(ﬂ?, y)) (UO(J?, y) ( )
By the choice o = 2|sp| + 2 and Lemma 3.6 (A.2) we have

A me,R 2 . 1/]s0|+2
{ JQFSE € L2(U; HI%l+2) (3.:60)

J @F R is compactly supported in U.
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Multiplying (3.56) by JQF=E, we obtain (where (-|-) is the duality on 24 = 0)

<GE,R|J@F€,R> _ <%axdFe,R|J@Fs,]R> + <JEF€,R|@FE,R>
(3.61)
= =5 (FoRlaumo JQF R aum) + i + T + T

A = (e {(oE) - sm)arn)
Fo = (JF%|[50,, + E,Q| =)
Iz = <JF€’R|@G57R>~

By (3.57) and (3.60), both [(G=R|JQF=R)| and J5 are O(). By construction of @ (see (3.50)) we have [E, Q] = 0
so by Lemma A.3, we get J2 € O(e). Finally, we have

JE:JEO+(q9 0) ;

0 0
e 1
y i e y
JEq %}zzel vl = XZ] (z¢)e*™
G =)
so we obtain
(JIE)* - (JE) _ ((qg)*o— q0 8) . (3.62)

By formula (3.32) and if we choose 6(t, z, 7,£’) real, g is self adjoint, so from Lemma A.4 we deduce J; € O(e).
Summing up, we have thus

sup | (F*® s, =0 JQF*%|,0) | < +o0. (3.63)
€

We now remark that if §; € S° vanishes on ¢’ = 0,7 = 0, there exist 6 € SY, vanishing on ¢ = 7 = 0 such
that (1+ d2)(1 — &1) = 1 — p, where p(t,z,7,£’) € SY, is supported in co < |7] + €| < 1/co for some ¢y > 0.
Decreasing ag, hence Wy, if necessary, we then will have pTro 1(FSR) € /2L (Uy, H*~1). Using once more
Lemma A.3, we can thus rewrite the boundary condition (3.55) on the form

Tro (F&®) — 6Tr (F&F) € /212 (Up, HO 1) . (3.64)

1 02
Let Q = <gg g4>; inserting (3.64) in (3.63) and taking in account the a priori estimate (3.52) we get

(3.65)

sup |(Try (FER)| AT (F=R))| < 00
A= Q2 +Q16+5*Q36+6*Q4

Let (we use Lem. 3.4 for the second equality)

Fy® = pro(Fe) = PR 4 §(FF 4 F=1), (3.66)
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We know already that Tro(FR), Tro(F=T) and Tri(F&T) are of the form 6T (FeR) 4 e'/2L2(Uy, H~1) so
we get from (3.66)

Try (F5™) = (L4 0)Try (F°%) + /2L (Uo, H™7Y). (3.67)
Decreasing « if necessary we get as above
Try (FFR) = (14 0)Try (ngR) + V22U, Ho V). (3.68)

Therefore (3.65) and (3.68) imply

sup |(Tr1 (F5 ™) | AgTr1(F5 )| < +00 (3.60)
€ .
Ag = Q3+ 5" Ay + Az
with A;, Ay € ST7 .
By (3.66, 3.44), Tri(Fg™) is of the form
Tri(Fg™) = Y zlt,a)e™ (3.70)

17, o, 15

and we may assume that the functions z¢(¢,2’) are supported in {p = 1}.

For ||¢!]| < B we have ¢ (%) =1, and lé%ﬂ ~ (1 4+ [€])~Clsol+2); from (3.47) we therefore get for some
Co>0

(Try(F5 ™) QFTr(F5 )| = Coll Tra(Fy™); L (Uo, H* )2, (3.71)

We now remark that in (3.69), we may replace any 6(¢,2’, 7, &) term by x((7,&')/a0)d(t, z',7,£'), with x € C§°
equal to 1 in the unit ball, and

U

-1

X((1,€)/20)d = ‘ X((7,67)/a0)€50; + x((7,€') /) Tho

1

<
Il

where b, € SY so we have, for some C; > 0
(Tr1(F™)|(6A0) T (F5 )| < Crawo|| Try(Fg™); L2 (Uo, H* )12 (3.72)
From (3.69, 3.71, 3.72) we get, for ag small,

sup ||T7"1(F05’R) ;LQ(UO ; HS°_1)|| < 400 (3.73)

so by (3.68), the same estimate holds true for T'r; (F&®), hence also for
Tri(F&!) = 0Tr (F®) + &/2 L2 (Up, H71).
Thus we have

sup || Tr1 (Fe); L?(Up, H® )| < . (3.74)

This concludes the proof of Theorem 2. O
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4. PROPAGATION ESTIMATE

This section is devoted to the proof of Proposition 0.3. We fix a zero order o.p.d. Q(e,t,xz,£0,,£0;) equal to
Id near K, with essential support in W; and we argue by contradiction. If (0.50) is untrue, there exist sequences
ek =0, % —0 hy — 0, hy > ep/y, and uF € IZ: such that

[ub] =1
1 > B2 (4.1)

E”QFO( )HL2(XT ) = [”FO( )\xd=0||L2(XTOmxd=o) + flu ||L2((O,TO)><V) :

In particular the right hand side of the second line in (4.1) goes to zero.

Let £ and [QO} be defined by the formula (0.51) with u¢ = u¥. We have

g1
EN™ 1 n_ (LY Ly
L %(z) L™, L _<Lg Lt (4.2)
so we get
£N<h2/s2L§ njery) © i \njery L} +§2 7 (E) hjeLy Lp ) (4.3)

By Lemma 2.1, i) 2L is a smooth function of z,&' = 28,7 = 28,, defined for £(|¢'| + |r]) small. Therefore,
L(h,x,28,,%0,) is a h-0.p.d. defined for £(|¢’| + |7|) small, with asymptotic development

L~ 22:0 (%)n Lr (4.4)

and by Lemma 2.1, ii) we get

o (S ) (6)) w

Let u* be the extension of u* by zero outside Q. Let 1 be a h-semiclassical measure associated to {u*} (see [8]).
Let ng the extension of g§ = T'o(u*) by zero on z4 < 0 and let v be a h-semiclassical measure associated to ng'
Using (2.45) and klim er/hi =0 we get

— 00

yzx%(t,x;f’ =0,7=0)u (for & € O0QX] — 1o, 10]). (4.6)

We have u¥ € I;* so we know that p is supported in |7| € [0.9,2.1]; moreover, by the proof of Proposition 1
Section 2, the support of yiq is contained in the set p(x)72—||£]|* = 0, and p|Q propagates on the bicharacteristic
flow of /_)(:10)7'2 — €l Let g¥ = T'(u*), and let A(h,t,x, hdy, hd;) be any h-o.p.d. compactly supported in
T*(Xr,). Using (0.41, 0.42) and kILIgO er/hi = 0 we get with h = hy,

A [(haixd + z:) gk} € O(h=L?). (4.7)
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Ly Lo
Ls L4
get that g& satisfies near the boundary the second order tangential h-pseudo differential equation,with h = hy

Writing £ = ( ), we observe that the principal symbol of £; vanishes near x4 = 0. Using (4.1, 4.7) we

A [(hamdfg{; n (Rg + thh%) g(ﬂ € O(h®L?)

. 4.8
T ghla,=ollz2 =0 .

where R o are h-tangential o.p.d. defined for §(|£’| + |7]) small, and the principal symbol of Ry , R is given
by

R) = as(z,i€') + p(z)m* + 0 ((%)2 T4> : (4.9)

We can now use the propagation theorem at the boundary for second order Dirichlet problem (see [8] for the
localization and propagation at hyperbolic point and [10], Append. or [3], Th. 1 for the propagation result near
the glancing set; here we view 7, = £ /hy, as a small parameter in equation (4.8), and we notice that the proof
of the propagation theorem allows this additional parameter going to zero). We get that the support of v is
contained in the set p(x)72—||€]|? = 0, and that the support of v propagates along the generalized bicharacteristic
flow of /_)(:10)7'2 — |I€]1%; but (4.1) implies po,1o[xv = 0, so from (0.9) and (4.6) we get pi¢e1, /2—a, 70 /2+a[ = 0 for
a small. This is in contradiction with ||u*|| = 1 by (2.41). O

A. SEMI-CLASSICAL O.P.D. WITH OPERATOR VALUES

A.1. Classical calculus

We recall here some classical properties of semi-classical tangential pseudo differential operators. Let
Z =R x [0,79]s, and Hy, Hy two separable Hilbert spaces.

We denote by S%(H; — Hz) the vector space of functions q(e, z, ¢, z4) defined for € €0, €¢] (g0 small) smooth
in (2,{) € T*R? | x4 € [0,70], compactly supported in z, with values in bounded operators from H; to Ha
which satisfies the estimates

Vo, k 3Co 1 Ve, 2,(, x4

Al
1@+ [CDR02 ., a(e. 2. G, za)s Hy — Hol < o (A1)
and admitting classical asymptotic expansions in €
=\ /e e\"
qn~ Z (z)"qn(z,(:,xo S VN ¢q-— Z (;) gn € N SY. (A.2)
n=0 n<N
For f(z,x4) € L?>(Z, Hy) with compact support in z, the Fourier transform f;((, xq) is defined by
fE(C?xd) = /eiiZC/Ef(ZVKEd)dZ € Lz(RZ{) x [Oﬂ xd]7H1) (A?))

and for ¢ € S%,(Hy, H2) , Op(q)(f) is defined by

Op(q) (f) (67 2, xd) = (27{6)71) / eiZC/EQ(67 2, Cv xd)[fs (C? xd)]d< (A4)
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We define the set £, (H; — Hs) of tangential pseudo differential operators from L%(Z, Hy) to L?(Z, Hz) by

Q = Q. € EL(H, — Ha) iff there exist p(z) € C5°(RP)
and ¢ € S, (Hy — Ha) such that (A.5)
Q:(f)(2) = Op(@)[p(2)f] Vf € L*(Z Hy).

For Q € £, (Hy — Hs), one has Q = Op(q) with
q(e, z,¢,wa) = (27T)7p/€7“€§(€7 z,(+ &b, x4)p(z + t)dtdo

and Q is bounded on L2, i.e.
3C Ve |Qc(f); L*(Z, Ho)|| < O\l f; L*(Z, H). (A.6)

For Q1 = Op(q1) € €L (H1, — Hs) and Q2 = Op(qe2) € EL(Ha — Hs), one has Q10 Q2 = Op(q) = Q € EL(H,
— Hs) with

q(67 2, Cv xd) = (27(-)7;0 / 67%9Q1 (67 2, C + 69; xd) © QQ(sv z+1t, Ca xd)dtdg

and the asymptotic expansion of g is given by the rule

eylel 1

qnr~ g (;) aag(h 097 qa. (A7)
The set of operators £L(H; — Hz) is free of coordinates, i.e., if z — ¢(z) is a smooth diffeomorphism of RZ,
and Q € &£, then po Qo ¢! € £,. Thus, in the definition of £, we can replace RE by a smooth manifold
M. For Q = Op(q) € E4(H1 — H>) its principal symbol, go(z,(,z4) is then defined as a smooth function of
(2,¢,mq) € T*M x [0,70], with values in bounded operators from H; to Hs. For Q = Op(q) € £}, the essential
support of Q SE(Q) is the closed subset of T*M x [0, ro] defined by

po = (20,0, z4,0) € SE(Q) iff there exists a neighborhood (A8)
W of pg such that gy ~ 0. '

Let K be a compact subset of T*M x [0,79]. One says that Q1 = Q2 near K if SE(Q1 — Q2) N K = ¢ and if
w: Hy — Hy is bounded, @ = u near K means @ — ¢(y, z4)u = 0 for some ¢ € C§°(M x [0,79]) equal to 1 near
the projection of K on M x [0,7¢]. If @ = 0 near K, for any scalar tangential o.p.d. P € £,(C — C), such that
SE(P) C K one has

VN, 3CN QP or PQ; L*(Z, H\) — L*(Z, Hy)|| < Cne™. (A.9)
One says that Q = Op(q) € & is elliptic on K if for any p = (z,(,z4) € K, the principal symbol go(p) is an
isomorphism from H; onto H». In that case, there exist £ € £5(Hy — H;) with principal symbol e equal to

qal near K such that Fo @ = Idy, and Q o E' = Idy, near K.

A.2. An exotic calculus

Let ’H‘gi, be the d-dimensional torus, and for s € R, H® the usual Sobolev space

H* = 0 3 '™, (14 ) | <o b - (A.10)
Lez? £
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For any operator A: N H* — UH?®, we denote by A, the matrix coeflicient
S

A&k :f (Aeiky).e—iéy. (A.ll)
Td

For m € R, let A™ be the following class of operators on the torus

L+

A™ =L A YN, 30N |Aps| < On—— D
{ v el = O e

Ve k€ Zd} : (A.12)

One has A™ o A™ C A™T™' and for A € A™, A is bounded from H*® to H*~™ for any s € R. The identity

10
[Dj, Ao = (Uj —kj)A¢y Dj = —-—— (A.13)
i 0y
shows that AY is the class of bounded operators on L? = H® such that all the commutators
[Dj17[Dj27"'[Djp7A]"']] (A14)

are bounded on L?.As a consequence, we get

Lemma A.1. Let A€ A% and § < (||A; L? — L?|)~1. Then (Id+ §A)~! € A°.

Proof. B = (Id+ 6A)~! is bounded on L?, and all the commutators (A.14) for B can be expressed in terms of
commutators for A by iteration of the formula

[D;, B] = —Bd[D;, A]B.

U
Let Z =RE x [0, r¢].
We denote by S;™ the vector space of functions A(e, z,(, xq) defined for e €]0, 0] smooth in (2,¢) €
T*R? | x4 € [0,7], with values operators on the torus, which satisfy the estimates

va)ﬁ)V? N7 HC ) \v/&’\?e? k’ Z’ C?'/L‘d

A.15
0411708, Aeae 2.6 < O Y
In other words, A € Sy means
VYo, B,y (1+[¢|)02,,00 A Amtle
uniformly in €, 2, {, z4.
Leibniz formula implies
StmosL™ ¢ st (A.16)
We denote by Bgm the class of operators
Op(A); Aes;™
A AR W)
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where f € L?(Z; H®) for some s, Z = RE x (0,70)z,, and f- is the partial Fourier transform

FolGona) = [ €5 (e mapds € L(RE x (0,ma)s ) (A.18)

Lemma A.2. For any A € S;™, Op(A) is bounded from L*(Z; H®) in L*(Z; H*=™) for any s, uniformly in
€ €0, o).

Proof. To avoid the loose of derivative in z, we use the fact that A is a Schwartz function in (, so we can write,
by Fourier inversion formula

Ale, z,(,zq) = (QW)*p/eiCHB(E,z,O,xd)dﬂ (A.19)
with B € S§™; we obtain

Op(A)(f) = (27r)*p/B(s,z,9,xd)[f(z +6,x4)]db. (A.20)

The bounds (A.15) for B (with a = =0, |y| =p+ 1) imply
Cs

Vs, 30 sup |B(e,-,0,-); L*(Z; H®) — L*(Z; H*~™)|| < T (A.21)
and the lemma follows from (A.21) and
£ (= + &b, za)ll = [1f (2, za) || in L*(Z; H°).
|

The next lemma gives the principal part of the symbolic calculus
Lemma A.3. For A; € 8™, Ay € 85™, one has
Op(A1) 0 Op(Az) = Op(B)

B = A1 @] A2 —|— €R (A22)
Be ngl—&-mg’R c ng1+m2+1.

Proof. We have Op(A;) o Op(Az2) = Op(B) with
B(e,2,(,q) = (27(-)7;0//67“"141(5, z,(+en,xq) o As(e, z +t,(, xq)dndt. (A.23)

Using the Taylor formula f(¢ +en) = f({) + T en; fol g—g (¢ +esn)ds and integrating by part with respect to t;,
i J
we get B = Ay 0 Ay + &R with

1/ n OA A
R= i 2}/ ds//(27r)_pe_zt"&(5, z,( +esn, xq) o 045 (e,2 +t,¢, zq)dndt. (A.24)
7 Jo j

8@ 6zj
. . t,mi1+mo+1 t,mi+mo ¢ e .
We shall verify R € S (the proof of B € §7 is similar).

If we define By = %’22 c ngQ‘H and B € ngl by
J

83—?'1(6,,2,@%) = (27r)7p/eiGCBl(&Z’e’xd)da
J
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we are reduce to prove
1 .
/ ds / ¢SBi(e, 2,0,24) 0 Ba(e, z + €50, ¢, x4)df € Sy™ T (A.25)
0

The verification of (A.25) is now easy using (A.16), the Leibniz rule for derivatives and the fact that B
(resp. Bz) is in the Schwartz space with respect to 0 (resp. (). O

Lemma A.4. Let ¢ € S(R?) and A € ;™. One has
Op(4)" 0 ¥(=02) = Op(A"¥(Q)) + < Op(R) (A.26)

with R € Sy

Proof. We have Op(A)* = Op(B) with
B(e,z,(,xq) = (2m)"P //e*“"A* (e,z+t,( +en,xq)dndt. (A.27)

Using the Taylor formula as before, we get the identity (A.26) with

I o 02 A
R="= E/ ds /(27r)_pe_m7 0 (e,z+t,¢ + esn,xq)(C)dtdn. (A.28)
15 Jo 0z;0(;

As in the proof of Lemma A.3, we just observe that, for B € SEm,We have

1
/ ds / e Ble,z +¢50,0,24)0(C)d0 € Sy™. (A.29)
0

B. APPENDIX

B.1. Proof of Lemmas 3.4 and 3.5
Let pr§(x) and pré(t,z,7,¢') be the operators

pri(x) (Zkzkeiky) =1 (”%—/2'2) zg €Y (B.1)
, or)? )
pitene)=v(I50) [ o-Bonne) (B.2)
and
Spri(t,x, 7, &) = pri(t,a, 7, &) — pri(x). (B.3)

Let z = (t,z),( = (1,¢&'), and (6pr’); » be the matrix of pr® as in Appendix A.2. We shall prove:
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For any «, 3,7, N, there exist Cqy g,,n such that

|
(1+1¢1)71020 (091 (2, ) k| < Co N et bre

for every z,(,j,k, ¢

Sprt(z,0) = 0 for any £, z. (B.5)

The two Lemmas 3.4 and 3.5 are consequences of the two properties (B.4, B.5), by definition of the class S&™
(see (A.15)). In fact (B.4) implies that the series ((3.45) and (3.48)) are convergent in the class S*° and St~°.

(B.5) is obvious since E(z,0) = Ey(z) by (3.21) so prf(z,0) = pr§(z). We have also E(z,¢) = Eo(z) for
€] > ag since E(z,¢) = Eo(2) + <q09 8
¢ and we can forget v and (1 + [¢])” in the proof of (B.4). We firt conjugate E(¢,z,7,£') by the multiplication
by e*¥. We get by (3.21, 3.32, 3.39)

and 6(z,¢) = 0 for |¢| > ag so dprf(z,() is compactly supported in

e "o R(z,¢) 0 e = (L 1d +E(2,() (B.6)
B, ) = E5) + (0 o) ®.7)
ki —((k+0)7)
L ikyy ik

Bo@)Ewne™1 =21 o L ()™ (B5)

((k+0)1) z
¢‘(2,¢) = (%((kj + €)g>_1) o [ag(x,g’) + ji:]i g—?(:r,f')(ej(:r).Dy +ej(x).l) — plz,y)* | X (B.9)

- J

We define 7§(2) = e~ o pr§(z) o eV,
7t(2,0) = e W oprt(z,{) 0™ | snt =7t —xf .

We have

¢ iky | _ o (112
7o(2) %zke =1 52 20 (B.10)

_ (e !
“eo=v(%) [ a-Eeorg ®.11)
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We are now reduce to prove

For any «, 3, N, there exist Cy g v such that

(1+ |ep'e!

Tl + B

1020 (07);.k(2, Q)| < Cap.n

for every z,(, 7, k, L.

Notice that the spectrum of E§(z), with (¢, z) such that ||[¢Z| < 28 < ¢; can be separate in two pieces: two
small eigenvalues +i||¢”|| with associated eigenspace C2e¥, and the other part of the spectrum leaving outside
the complex disk [A| > ¢1/2. The same is true for the spectrum Ef(z, () (the cutt-off function x(z,¢) localize
q* in |¢| € 209 < B). In order to prove (B.12), we use a Grushin method.

Let A™ be the set of operators on (D’(T4))2 & C2 of the form

L= (é g) (B.13)

with A a 2 x 2 matrix with entries in A™ (see Append. A.2) B a linear map from C? in (C>=(T%))2, C a
continuous linear map from (D'(T%))? in C? and D € M?(C). As in Appendix A.2, we remark that A° is the

class of bounded operators L on H = (L?(T%))? & C? such that all the commutators [Dj, [D;,, - , [5]»,1,, L]] are

bounded on H, with
~ 19,, 0
. [ 7%;
5= (1 9).

In particular, Lemma A.1 remain valid. We denote by §$ the vector space of functions of (z,{) € V, V open

_ (A B0
1=0= (e bio) (B.14)

where B, C, D are as above and depends smoothly on (z,(), and A € S§*. In other words, L(z,() € S™ means
Vo, 9207L € A™Flel uniformly in (z,¢) € K € V. (B.15)

Let j,p be the injection and projection

j(w) = we® :  C2— C°(T%)?
{ p(f)=¢ fdy D'(T?) — C? (B.16)
and
LEO 2, 0) = (A - IE;(Z,C) .(7)) . (B.17)

Then LY(),.,.) is a holomorphic family in A with values in .,Zl\%,[, with inverse in ,21\‘—/[1 for |\| < %, with
Ve =A{(z, Q) 1671 < 28}

Notice that in view of (B.8, B.9), £ can be replace by a small parameter in R%~! in both E§, ¢, so all the
semi-norms of (L¢(\, z,¢))~! are uniform in (¢, ) such that ||¢”| < 283.

Let L(\,2,¢) = (L*(\,2,¢)) "

Al B!
L= (cf D4>' (B.18)
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Then \ — E(2, () is invertible iff det(D*(), z,¢)) # 0, and we have the algebraic identity

(A —E%(z,¢)"" = [A" = BY(D")'CY(A, 2,0).

The function A* is holomorphic in A € {|z| < S} so we get by (B.11)

e L i
eo=—v(IZ0) [ morennog

4

(B.19)

(B.20)

This implies that the estimate (B.12) holds true for ¢, hence for =¢ ((B.12) is obvious for 7§).

B.2. Proof of Lemma 3.6
One has [pr(t,z,7,¢),E(t, z,7,¢)] = 0,

€ S0 E € 81, so Lemma A.3 implies [Op(pr), Op(E)] € eS*2.

0, pr
In fact, the more precise estimate [Op( r), Op(E)] € sSt 1 holds true. To see this, we just observe that we have
1) a

E — Eg € 84Y; from the definitions ((3.2
the symbolic calculus formulas (A.23) and (A.
satisfies the following equation

e 0

- Y e, I
ial‘d G

FE’I-FOP( )FEI

where, F*! and G are such that

sup ||F=1; L2(U; H#0)|| < +o0
€

supe![|GS LA(U, H* )| < +oo.

We shall first modified E in (B.21) in order to work with an elliptic equatlon.

nd (3.33)) we get O¢Ey =0, 0.Eq € St 1 and the result follows from
24). We then deduce from Lemma 3.1 that F*! =

= Op(Id—pr)(F*)

(B.21)

(B.22)

Let us define prq(z) and

pr(t,z,7,&) by formulas (3.44) and (3.45) with 7,/1(4”%?“2) instead of w(HZ 2ll® ). One has

pro(Id —pr)(t,z,7,)=0
and by the proof of Lemma 3.4 one gets

pr = pro + 6pr , 6pr € Mao(SH°

Let x(7,¢") € C5o(I7] + ¢'] < 2) equal to 1 near (|7] + [¢'| < 1), Xao(7,¢) =

operator on the torus

by

52

"2
K(z)(Zezet™) = %zﬁ (16H£IH ) o

Let us define E by the formula

E=E, +JE

~ 0 0

Eo=Eo+{r o

~ 0 0 0 0 ~
<[l 0) i o)

)76]5745/:7':0 =0.

(B.23)

(B.24)

x((1,&")/ap) and let K(x) be the

(B.25)

(B.26)
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_ 0 0 (0 O Co
One has 0y, =0 and (K 0) opry = (K 0), which implies

~ 0 0\ -~ 0 0
E:E+(K 0) oer(XO—I—(K 0) (1 = Xay)-
One has (1 — xa,)F=! € eL?(U; H* 1) so using (B.21, B.23) and Lemma A.3, one gets

{e o) -I-O]D(E)} el — ée,[

7 E)md

supe~V[|G=T; LA (U, Ho 1) < +oo.

Notice that IEO is a diagonal operator

Eo(Szeet?) = 2 Eq ¢(2¢)e™
4
ly — ()
B 2 161¢, 11
Boe= |l +o (M)
() ;

The eigenvalues of IEM are

. 16 gl/ 2 1/2
NE =gy <|zg|2 +1p (7”6296” )) .

In particular, one has with 0 < ¢; < ¢
er(t]) < [ImdE| < ealt)

We choose the associated eigenvectors
The map Jo(z) defined by

is then an isomorphism of H?® for any s.
Let D* be the operators

By construction, one has
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(B.27)

(B.28)

(B.29)

(B.30)

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)
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Lemma B.1. If ag is small enough, there exist 6B,5C,6DT, 6D~ in St°, with support in {|7| + |¢'| < 200}
vanishing on & = 0,7 = 0 such that the following identity holds true

Id 6B\ ' ,_,~. (Id éB
(50 Id) Jo BTy (50 Id)

Dt +46D* 0
( 0 D+ 5D—> : (B.36)
Proof. By formulas (B.26, B.35), one has

4= (D* 0 (M, M,
J EJO_<O p- ) TOM . aM = (gt e

where §M; € S§*0, vanishes on ¢’ = 0,7 = 0, and has support in {|7| + [¢/| < 2ap}. Equation (B.36) is then
equivalent to the following system of equations

OM; + 6M36C = 5D+

oMy + 0M30B =d6D_ (B.37)
SMy+ M 6B+ DY6B =8BD~ +8BSD~ ’
SMsz + SMy6C + D=6C = §CDT 4+ 6C6D™.

We are thus reduce to solve the equation, with unknown 6B € S*°

D*6B — 6BD~ + 6M16B + 6 My — §BSMy — 6 BSM36B = ¢(6B, 5M)
$(6B,5M) = 0.

(B.38)
Let £, & be the Banach space of operators on the torus: (Ag, = §r.(Ae™*¥)e ")

&= {A; | 4; &l = sup |Aex|(1 + ¢ — k)N < —l—oo} (B.39)
k

&, = {A; | A; &4 = sup | A k] (1 + € = kNN () — Af (2)] < +oo} (B.40)
0,k

where Ny is given, Ny > d + 1. By (B.30, B.31), the injection &, — & is continuous, and the map (A;, As)
— A1 Ay is continuous on £ by the choice of Njy.

We shall first verify that (B.38) has a unique small solution 6B € &,, for (¢,7,z,') fixed, if o is small
enough. By construction, one has

(DY6B = 6BD )k = (Af — \;)(0B) ek (B.41)
s0 6B — DT§B — §BD~ is an isomorphism of &, onto £. The map (6B,0M) — ¢(6B,6M) is differentiable
from &, x (€)?* to € and satisfies

0]
= DY) = (\D~ =0. B.42
0(0,0)= D ()= (D 6(0,0)=0 (3.42)
By the implicit function theorem, the equation ¢(6B,0M) = 0 has thus a unique small solution 0B € &,,

provide ||§M; £|| is small. Using (B.26) (¢ and dpr vanish on £ = 7 = 0) and x4, (7,¢') = X(%) one gets the
estimate || 0M;; £]] < C*ap. This shows the existence of 6 B solution of (B.38).
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It remains to prove that for any fixed z = (¢, ), = (7, £), we have

Cn

VN,3CNn  |(6B)ek(z,¢)| < AT —I~ (B.43)
and that the functions (z,() — (dB),x(z, () are smooth and satisfy
Yo, 8,7, N, 3C Vz,(, 0k
1+ K1 02020B)stz, O < O HD (B4
Let V; = % 8‘9% a derivation on the torus. The commutator [V;, 0 B] satisfies the linear equation
L([V:,0B]) € €
{ L(u) =DV u—uD™ +dMju — udMy — udM36B — § B Mu. (B.45)

The linear map £ is an isomorphism of £, onto & provide || M;; &|| (hence ||§B; £]|) is small enough; decreasing ag
if necessary, we find that (B.45) admits a unique solution [V;,dB] € &, — £. By iteration, all the commutators
[Vi1,[Viz, - [V1k,0B] - - -] belongs to &, so (B.43) holds true. By construction, the functions (§B)¢ (2, () are
smooth and compactly supported in {|¢] < 2ap}. For any m > 0, let A™, A™ be the vector spaces

(14 |eh™ }
A™ =< A;VN,ICn|A <COyn——+7""—= B.46
{ v NI Ag k| N(1 0= k)N ( )

1 m
A?:{A;VN,HCMAZ,M O sl } (B.47)

A (@) = Ap ()] (L 16— KDY

In order to prove (B.44), we differentiate (B.38) with respect to (z,() and we are reduce to verify that the
following assertion holds true

There exist 3 > 0 such that for 6M;,6B € A°,
with 33 [[0M;; € + [[0B; €]| < B8, the map u — L(u) (B.48)
J

is an isomorphism of A" onto A™ for any m > —1.
(Here we use the fact that A — (99D1)A — A(02D~) maps A” into A™*lel for any a: it is a consequence of

the estimates |\f (z) — Ay (z)] > C*((€2) + (k7)) and for [a] > 1 [09AE (z)] < Co(1 + [€])lee).)
Let us first verify that (B.48) holds true for m = 0. We remark that A° (resp. A%) is the set of operators

A € & (resp.&,) such that all the commutators [V, [V, [Vi,, -+, [Vi,, A]] belongs to € (resp. &;). For 3 small £
is an isomorphism between &, and € and for u € &,, v € £ such that L(u)—v = 0, one has L([V;,u])—[V;,v] € €.
Therefore (B.48) holds true for m = 0, and by the same argument for m = —1. We now fixe § and we proceed

by induction on m > 1; let us assume that (B.48) holds true for —1 < m’ < m — 1. Let A be the operator on
the torus A(Xz,e?) = S(1 + [£])ze™. We have L(u) = D u — uD~ + pu + ug with p,q € A%, so [A,p] € A%
from [A, D¥] = 0, we get L(Aw) — AL(w) = [p, Ajw. Let J : A™ — A™ the map

J() = ALTHA ) + L7 (A, pl£7H (A ) (B.49)
where £71 1 Am~1 — A™~1 is the inverse map of £. We have £ o J(v) = v, and it remains to show that

u € A™, and L(u) = 0 imply u = 0 : we have [A"1,p] € 472 s0 L(u) = 0= LA u) = [p, A" u € Am2
> A tue A" 2= ue A7 ! and we get u = 0. O



256 G. LEBEAU

Lemma B.2. Let Uy = {z € RP,|z| < ro}, and U = Uy x [0,71] with ro,ry > 0. For any { € 79, let
\e(z,24) € CO(U;C) be given continuous functions such that

Jeg > 0,dcy > 1,V4,Vz, 24

Ae(z,2a)| [ 1 (B.50)
ImA(z,zq) > cg and ——— —.,c1 -
o(2,24) = co T+ 70 e
Let D(z,x4) be the operator on the torus
D(z,24)[Zuee’™] = S(z, xa)uee™. (B.51)

Let o € R be given, and for ¢ €]0, 1], B-(z4) a family of bounded operator on E” = L?(Uy, H° (T%)) such that

i) VfeE%Ne x4 Bc(xq)][f]is a continuous function
of x4 € [0,r1] with values in E“ (B.52)
1) 30,Ve,Vaq || Be(xq); E7 — E7| < 0.

Then, for 6 < ¢y the Cauchy problem

€ d g —
u®(0) = ug € E°

admits a solution u¢ € C°([0,71], E7) N C([0,71], E°~1) such that

lu® (@), B7 || < [lug, B ||e™ (=2, (B.54)
Proof. We first observe that the assumption (B.50) implies that D maps C°([0,71], E7) onto C°[0,r], E°~1)
for any o. We have ||v; 7| = [|(1 + |D,|?)?/?v; E°|| and [D, (1 + |D,|?)?/?] = 0, so if one replace B. by
(1+|D,|?)?/2B.(14|D,|?)~7/2, we are reduce to the case ¢ = 0. For any L, let 7, be the orthogonal projector
7L (Zuee’™) = % uge’™. The equation

le|<L
e d

ct% _L.(D+B S (2q) =
D+ B ) ui (o)

ug,(0) = 7 (uo)

(B.55)

is an ordinary differential equation in the Hilbert space = L?(Uy, @ Ce*¥) = E; — E*, so admit a unique
le<L

solution u$ € C1([0,r1], EL). It satisfies the identity,
d €112 i € |,,E : € [,,E
p [lu$]I* = 2Re gDuL|uL + 2Re (i/emp Bempug |ug) (B.56)

so we get using (B.50) and (B.52) #‘:HUELHQ < =2(co — 6)||ug, ||?, which implies

5 (wa), EV)| < [lug, EOfle~(c0=0)% (B.57)

Therefore ug, is bounded in L*([0, 1], E7)NH'([0,71], E°~') = F for fixed £ so we can extract a subsequence ug

so that ug " 2 in Foand uf satisfies (B.53). In particular we have %#‘ldug — Duf = B.u® € L*([0,71], E°)

so uf € CY([0,7], E°) N CL([0,r1], E°~1). The estimate (B.54) is then a consequence of (B.57). O
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We can now achieve the verification of Lemma 3.6. We choose a tangential scalar o.p.d. Q2 equal to Id near
the support of @1 and with essential support closed to pg, and we define T' = Q20EQ2. Then Op(T)(xz4) acts
on L?(Uy, H?),Vo. Using (B.28), we still have

[fi + Op(Eo + T)} Fol e eL?(U, R ). (B.58)
1 0xq

We then apply Lemma B.1 to Eg +T* instead of E; let Iy(z) be the map

A\ N @)+t —A (@)t ,
Io(x) (z (Zé) e“y> =¥ |z <ef> + 2z, <elg;> ety (B.59)
£ ¢ £

We get the existence of §B,6C,6D%, 5D~ in S*° such that, with

Id 6B
I=h (50 Id)'

One has

(B.60)

_ + +
[NEy + T = (D oD 0 )

0 (D= +46D7)
Moreover, by the proof of Lemma B.1, and the fact that limO 1 1+1TDXao (€, T) || e = 0, we may suppose that
ag—

the norm of the tangential operators § D* (x4) acting on L?(Uy, H'*01*1) is as small as we want. Taking in account
the lower bound (B.31) —Im\, (z) > c1(£2) > c1, we can apply Lemma B.2. For every h € L?(Up, HI*I*1) we
get v° € L?(Uy x [0,71], H'*I*1) such that

0

E% +O0p(D~ 4+0D7)| v =0
d

V®|zy=0 = /2R (B.61)

sup [[v%, L2 (Uy x [0, m]; HI®H) || < C||h; L2 (Ug; HI* 1)
c 0
We put v° = |:’UE:|.

We choose 0(z4) € C5°(] — r1,71]) equal to 1 near zero. We denote by ( | ) the duality between L?(Vo, H?)
and L?(Vo, H=7). We have by (B.58)

o0 c ~
| {(50u, + 0p(Ea + 1)) P p(aa) Op(D)s) < 0] (B.62)
0
We integrate by part, taking into account Lemma A.4 and |6’ (x4)Op(I)v® ; L*(U, H!*I+1)|| < C*|h]|, we get
€ > € T * €
P eyl OpDtzlasca) = [ (0P| (500, + 00 (B3 + 7)) O da + 0. (B63)

We have H&[%OP(I)]QE; L2(U, H!*l)|| < C*®¢]||h]|, and the estimates
aa\l;?(x) - Ea%

)
|09Eo,e| < Ca(l+ €)1 Va,|a| > 1

< la|
‘ < Co(1+14]) Vo (B.64)
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implies
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I |Op(E§ + T) 0 Op(I) — Op((Ej + T*)I)] % LU, HI#|| < C'eel |

+ + + + (B.65)
| {Op(T (PP 0, ) = Op(1) 0 Op(P 48P 0 )] s LU HI0) | < Ctee| .
From (B.61, B.63, B.65), we get

‘<FE’I|xd=0|Op(I) m >' < C'e'?||n||. (B.66)

If one use the definition of I, the fact that h is arbitrary in L?(Uy, H‘S("‘H), one get for some D € S°
|Op(Id + 6B)*Tri(F=') — Op(D)Tro(F&1); L} (Uy, H** )| < Cet/2, (B.67)
Lemma 3.6 is then a consequence of the estimates (3.52), Lemmas A.2-A.4, and the fact for ag small, Id+ (5 B)*
is invertible in S°. O
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