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Abstract. The paper presents some results related to the optimal control approachs applying to
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1. Introduction

Mathematical theory of radiative transfer problems and kinetic equations is nowadays an extensive area of
mathematical physics [1, 2, 5, 8-10, 15]. It has various applications in astrophysics, theory of nuclear reac-
tors, geophysics, theory of chemical processes, semiconductor theory, etc. Radiative field in these problems is
defined by functions φ of spectral intensities of radiations which vary in accordance with transport equations.
One-velocity (monenergetic) stationary transport equations constitute an important case of partial integro-
differential equations that arise in th eproblems of neutron spread, in the transfer of optical radiation and in
other fields of physics [1, 2, 9, 10].

Let stationary radiative transfer be considered in a convex three-dimensional domain D with the boundary
∂D; the unit vector s = (s1, s2, s3) is oriented in the direction of radiative transfer and it is determinated by
polar angle ϑ ∈ [0, π] and azimuth ϕ ∈ [0, 2π]; Ω is the unit sphere; n is an unit vector of outher normal to ∂D.
We consider a stationary transport equation in the following form:

Aφ = f in Ω×D, (1.1)

where f is an internal source function and A is the transport equation operator. Let D be situated in a medium
from which an “incoming flux” φ(Γ) falls on D. Then the following boundary condition to φ

φ = φ(Γ) on ∂D as s · n < 0 (1.2)
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can be imposed. The boundary-value problem (1.1, 1,2) is “the direct problem”. It may be well- or ill-posed.
Direct radiative problems are usually well-posed [5, 8, 26].

We assume φ(Γ) to be unknown while an “outgoing flux” φ ≡ φobs is observed on ∂D as s · n > 0. Let us
consider one of inverse radiative problems: given f, φobs find φ and φ(Γ) ≡ v such that

Aφ = f in Ω×D,
φ = v on ∂D as s · n < 0, (1.3)
φ = φobs on ∂D as s · n > 0.

A number of physical problems can be formulated in the form (1.3) or can be approximately reduced to it: the
problem on “a critical incoming flux” such that D radiates an outgoing flux φ = φobs which is “limiting”; the
problem on radiation in the half-space domain with the following additional condition – the plane at z = 0
radiates a given flux φ = φobs which is determinated by a given temperature Tobs on this plane, and other
problems.

The boundary-value problem (1.3) is the particular case of a wide class of inverse radiative transfer problems
[1, 2, 10, 15, 17, 18, 20, 21, 24]. Usually inverse problems are ill-posed and there are specific difficulties in
development and numerical solution of such problems. They are often considered under additional assumptions
on D, coefficients, source functions, etc. [15-18, 21-24]. Therefore the elaboration of new approaches in this
field is an actual problem. One of these approaches may be based on the optimal control theory [3]. Indeed,
the problem (1.3) can be considered as “an exact controllability problem” to the state-equation solution φ and
to the “control” v. Hence, to investigate (1.3) general results of the control theory and operator equations (of
first- or second-type) can be used. Unfortunately, a lot of fine controllability results for elliptic, parabolic and
hyperbolic equations can not be used here and one needs new “mathematical tools” to develop inverse radiative
transfer problems by optimal control theory approaches. In this paper we consider one of such approaches and
corresponding “tools” applying simple inverse problem on unknown boundary function of type (1.3).

We show also the significance of “reflection operators” [6, 11] for development of inverse radiative problems.
These operators can be considered as analogous of Poincaré-Steklov operators in the radiative transfer theory.

Hystorically, functions of special type called reflection and transmission functions were introduced and
investigated in astrophysics [1, 2]. More common conception, the reflection operators, was developed in [4-
6].

So, the paper deals with the results related to a methodology of analysis of inverse radiative transfer problems
and corresponding reflection operators, estimates for the norms of these operators and an iterative algorithm
to solve the inverse problems on boundary function. This methodology includes the following main stages:
statement of an inverse problem; reformulation it as an optimal control theory problem, where some of unknown
functions are taken as “controls”; investigations of reflection operator properties and of the control equation
operator; solvability results (particularly in the case as regularization parameters are equal to zero); numerical
algorithms and their convergence rate.

We discuss this methodology applying to one of inverse radiative problems. But it can be applied to other
inverse problems of mathematical physics [14, 28-31].

2. Statement of the problem

2.1. Let the domain D be bounded by two parallel planes which are perpendicular to the axis Oz, i.e. D is
“the slab” of thickness H and we will write D = (0,H). Assume f, φ(Γ), φobs and all coefficients of one-velocity
stationary transport equation to be depended on z, ϑ, ϕ. Then the solution φ will be a function of these variables
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only and a class of radiative transfer problems in the slab D = (0,H) can be reduced to the boundary-value
problem (1.1, 1.2) which can be written as follows [1, 2]:

Aφ ≡ µ∂φ
∂z

+ φ− b

4π

2π∫
0

1∫
−1

p(z, µ0)φ(ϕ′, µ′, z)dµ′dϕ′ = f(ϕ, µ, z), (2.1)

0 < z < H, −1 ≤ µ ≤ 1, 0 ≤ ϕ ≤ 2π,

φ(ϕ, µ, 0) = φ
(1)
(Γ)(ϕ, µ) for 0 < µ ≤ 1, 0 ≤ ϕ ≤ 2π, (2.2)

φ(ϕ, µ,H) = φ
(2)
(Γ)(ϕ, µ) for − 1 < µ < 0, 0 ≤ ϕ ≤ 2π, (2.3)

where 0 ≤ b(z) ≤ b1 = const < 1,H < ∞, p(z, µ0) is the phase function characterizing the scattering in
the direction (µ, ϕ) of radiation arriving from the direction (µ′, ϕ′) on the volume element at the point z,
µ0 = µµ′ + (1 − µ2)1/2(1 − µ′2)1/2 cos (ϕ− ϕ′), (µ, ϕ) ∈ [−1, 1] × (0, 2π) (or (ϑ, ϕ) ∈ (0, π) × (0, 2π), where
ϑ = arccosµ) is a direction of radiative transfering. We assume all functions considered below to be defined
(with respect to variables ϑ, ϕ) on the unit sphere Ω and to be periodical with respect to 2π-periodic argument
ϕ. The points on Ω are given by the vector s = (s1, s2, s3) with components s1 = sinϑ sinϕ, s2 = sinϑ cosϕ,
s3 = cosϑ.

Below we consider the case when

2π∫
0

1∫
−1

|p(z, µ0)|dµ′dϕ′ ≤ 4π ∀ z ∈ (0,H), p(z, µ0) ≡ pN(z, µ0) =
N∑
l=0

wl(z)Pl(µ0),

N <∞, w0 = 1 > wl ≥ 0,

where Pl(µ) ≡ P
(0)
l (µ), P (m)

l (µ) – Legendre polynomials (if N = 0 then the isotropic scattering case is
considered; N = 1 corresponds to the “P1-approximation” which is used systematically in the nuclear reac-
tor theory, and so on). We will satisfy these constraints hereafter and use real-valued functions.

We introduce the following notations

B0φ =
1

4π

2π∫
0

1∫
−1

p(z, µ0)φ(ϕ′, µ′, z)dµ′dϕ′, Lφ = µ
∂φ

∂z
+ φ, Tφ = φ− bB0φ. (2.4)

If φ is a solution of (2.1–2.3) then

φ(µ, ϕ, z) = l−1φ(Γ) + L−1F ≡ φT + L−1F, (2.5)

where φT is a solution of the equation lφT ≡ LφT = 0 with boundary conditions (2.2, 2.3) and

F (µ, ϕ, z) ≡ bB0ϕ+ f,

φT ≡ l−1φ(Γ) =

{
φ

(1)
(Γ)(µ, ϕ)e−

z
µ , µ > 0,

φ
(2)
(Γ)(µ, ϕ)e

(H−z)
µ , µ < 0,
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L−1F =



z∫
0

e−
z−z′
µ F (µ, ϕ, z′)

dz′

µ
, µ > 0,

−
H∫
z

e−
(z′−z)
|µ| F (µ, ϕ, z′)

dz′

µ
, µ < 0,

φ(Γ) ≡ (φ(1)
(Γ)(µ, ϕ), φ(2)

(Γ)(µ, ϕ)).

Let us introduce the following sets:

X = {(ϕ, µ, z) : ϕ ∈ [0, 2π], µ ∈ [−1, 1], z ∈ (0,H)},

Γ− = {(ϕ, µ, z) : (ϕ ∈ [0, 2π], µ ∈ [0, 1], z = 0) ∪ (ϕ ∈ [0, 2π], µ ∈ [−1, 0], z = H)},
Γ+ = {(ϕ, µ, z) : (ϕ ∈ [0, 2π], µ ∈ [−1, 0], z = 0) ∪ (ϕ ∈ [0, 2π], µ ∈ [0, 1], z = H)},
where Γ− is the domain of inflow radiative transfer functions, while Γ+ is the domain of outflow radiative
functions. Let L2,H1

2 be the functional spaces, where we define the inner products and norms as

(φ, ψ)L2 ≡ (φ, ψ) =

2π∫
0

1∫
−1

H∫
0

uv dzdµdϕ, ‖φ‖L2 ≡ ‖φ‖ = (φ, φ)1/2,

(φ, ψ)H1
2

= (φ, ψ) +
(
µ
∂φ

∂z
, µ
∂ψ

∂z

)
, ‖φ‖H1

2
=
(
‖φ‖2 + ‖µ∂φ

∂z
‖2
)1/2

,

where µ∂φ/∂z ∈ L2 is a generalized derivative of φ ∈ L2. We define L2,− ≡ L2(Γ−) as the space of vector-

functions γ(−)(ϕ, µ) =
(
γ

(1)
(−)(ϕ, µ), γ(2)

(−)(ϕ, µ)
)

(the first components are defined for µ > 0 and the second ones
for µ < 0) with the norm

‖γ(−)‖L2,−=

 2π∫
0

1∫
0

µ
∣∣∣γ(1)

(−)(ϕ, µ)
∣∣∣2 dµdϕ+

2π∫
0

0∫
−1

|µ|
∣∣∣γ(2)

(−)(ϕ, µ)
∣∣∣2 dµdϕ

1/2

.

The space L2,+ ≡ L2(Γ+) is introduced as the space of of vector-functions γ(+)(ϕ, µ) =
(
γ

(1)
(+)(ϕ, µ), γ(2)

(+)(ϕ, µ)
)

(the first components are defined for µ < 0 and the second ones for µ > 0) with the norm

‖γ(+)‖L2,−=

 2π∫
0

0∫
−1

|µ|
∣∣∣γ(1)

(+)(ϕ, µ)
∣∣∣2 dµdϕ +

2π∫
0

1∫
0

µ
∣∣∣γ(2)

(+)(ϕ, µ)
∣∣∣2 dµdϕ

1/2

.

2.2. Let φ(Γ) be the vector-function: φ(Γ) =
(
φ

(1)
(Γ), φ

(2)
(Γ)

)
, whose components are present in boundary conditions

(2.2) and (2.3).

Theorem 2.1 [5, 34]. If f ∈ L2 and φ(Γ) ∈ L2,−, then: (1) There exists a unique function φ ∈ H1
2 which is

the solution to problem (2.1–2.3). (2) The function φ satisfies equations (2.1) almost everywhere in X condition
(2.2) for almost all µ > 0, and condition (2.3) for almost all µ < 0. (3) For φ, the following estimates hold:
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C[‖f‖L2 + ‖φ(Γ)‖L2,− ] ≤ ‖φ‖H1
2
≤ C̃[‖f‖L2 + ‖φ(Γ)‖L2,−], C, C̃ > 0,

where C and C̃ are independent of φ, f , and φ(Γ).

Theorem 2.2 [5]. If f ≡ 0 in (2.1–2.3), φ(Γ) ∈ L2,−, then: (1) There exists a unique function φ ∈ H1
2 which

is the solution to problem (2.1–2.3). (2) The function φ satisfies equation (2.1) almost everywhere in X and
boundary conditions (2.2) and (2.3) almost everywhere. (3) For φ, the relationship(

T−1µ
∂φ

∂z
, µ
∂ψ

∂z

)
+ (Tφ, ψ) + (φ, ψ)L2,+ = (φ(Γ), ψ)L2,− (2.6)

is valid for an arbitrary function ψ ∈ H1
2 , and the following estimates hold:

C‖φ(Γ)‖L2,− ≤ ‖φ‖H1
2
≤ C̃‖φ(Γ)‖L2,− , C, C̃ > 0,

where C and C̃ are independent of φ and φ(Γ).

Theorem 2.3 [5, 28]. The following estimate holds for the solution φ of the problem
(2.1–2.3) with f ≡ 0:

‖φ‖2L2,+

‖φ‖2L2,−

≤
1−

√
1− b21

(
cosh

(
H
√

1− b21
)
− 1
)
/ sinh

(
H
√

1− b21
)

1 +
√

1− b21(cosh
(
H
√

1− b21
)
− 1)/ sinh

(
H
√

1− b21
) · (2.7)

2.3. Assume the function γ(−) ≡ v – “a control function”, to be unknown, while there is a given function φobs

∈ L2,+ defined on Γ+. Then we can formulate the following inverse problem: for given f ∈ L2(X), φobs ∈ L2,+

find u ∈ H1
2 , v ∈ L2,− such that

Au = f in X,u = v on Γ−, inf
v
J1(v, u), (2.8)

where
J1(v, u) = α||v||2L2,− + ||u− φobs||2L2,+

, α = const ≥ 0.

Let φ(0) be the solution of the problem given by

Aφ(0) = f in X, φ(0) = 0 on Γ−. (2.9)

We express this solution in the following form:

φ(0) = G0 f, (2.10)

where G0 : L2(X) → H1
2 is the linear operator – the resolution operator of the problem (2.11). Now we can

reformulate (2.8) as the following inverse problem to the function φ = u−φ(0): for given φ(0) ∈ H1
2 , φobs ∈ L2,+

find φ ∈ H1
2 , v ∈ L2,− such that

Aφ = 0 in X,φ = v on Γ−, inf
v
J(φ, v), (2.11)

where
J(φ, v) = α||v||2L2,− + ||φ− (φobs − φ(0))||2L2,+

, α = const ≥ 0, φobs ∈ L2,+.

Later on we investigate the inverse problem (2.11).
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3. Reflection operators and their properties

3.1. Introduce some operators to be used in the sequel.
Consider the following radiative transfer problem:

Aφ = 0 in X, φ = v on Γ−, (3.1)

where v ∈ L2,− is a given function. This problem has a unique solution φ ∈ H1
2 . We write φ in the following

form:
φ = G1v, (3.2)

where G1 : L2,− → H1
2 is a linear bounded operator.

Later on we use also the traces operators P(−), P(+):

P(−)φ ≡ φ|Γ− = (φ(µ, ϕ, 0), φ(−µ, ϕ,H)), P(+)φ ≡ φ|Γ+ = (φ(−µ, ϕ, 0), φ(µ, ϕ,H))

∀φ ∈ H1
2 , µ > 0, ϕ ∈ (0, 2π).

According to the above statements the operators P(−), P(+) are bounded.

Now, let us introduce the adjoint problem

A∗ψ ≡ −µ∂ψ
∂z

+ ψ − b

4π

2π∫
0

1∫
−1

p(z, µ0)ψ(ϕ′, µ′, z) dµ′dϕ′ = g, (3.3)

ψ(ϕ, µ, 0) = ψ
(1)
(Γ)(ϕ, µ), −1 ≤ µ < 0, 0 ≤ ϕ ≤ 2π, (3.4)

ψ(ϕ, µ,H) = ψ
(2)
(Γ)(ϕ, µ), 0 < µ ≤ 1, 0 ≤ ϕ ≤ 2π, (3.5)

where ψ(Γ) = (ψ(1)
(Γ), ψ

(2)
(Γ)) ∈ L2,+. This boundary value problem has a unique solution ψ ∈ H1

2 ∀g ∈ L2,

ψ(Γ) ∈ L2,+. We represent ψ as ψ = G̃0g ∀g ∈ L2 for ψ(Γ) ≡ 0, and ψ = G̃1ψ(Γ) ∀ψ(Γ) ∈ L2,+ for g ≡ 0, where
the resolution operators G̃0 : L2 → H1

2 , G̃1 : L2,+ → H1
2 are bounded.

By P1, P2 we denote the projection operators defined as follows: P1g = (g1, 0), P2g = (0, g2) ∀g = (g1, g2)
∈ L2,− ( or L2,+). The subspace L

(0)
2,− ≡ P1L2,− ⊂ L2,− (or L

(0)
2,+ ≡ P1L2,+ ⊂ L2,+) consists of vectors

P1g = (g1, 0) ∀g ∈ L2,− (or ∀g ∈ L2,+).

3.2. Let us consider the problem (3.1). This problem has a unique solution φ ∈ H1
2 and there is a trace

φ|Γ+ ∈ L2,+. Assume w ≡ φ|Γ+ to obtain the transmission-reflection operator

Sv = w, S : L2,− → L2,+,

that will be called for simplicity the reflection operator.

Let U, SU be the following operators

Uw = w(ϕ + π,−µ), w(ϕ, µ) ∈ L2,±, SU = US.

Consider now the adjoint problem (3.3–3.5) where g ≡ 0 and ψ(Γ) = (ψ(1)
(Γ), ψ

(2)
(Γ)) ∈ L2,+. This problem has a

unique solution ψ ∈ H1
2 . Assuming v ≡ ψ|Γ− ∈ L2,−, we obtain the operators

S∗ψ(Γ) = v, S∗ : L2,+ → L2,−, S∗(U) = S∗U.
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Theorem 3.1. The following relationships and properties hold:
(1) S∗ = (S)∗, (SU )∗ = S∗(U). (3.6)
(2) The operator SU is symmetric in L2,− and S∗(U) in L2,+.
(3) S = US∗U, S∗ = USU . (3.7)
(4) The following estimate holds for the norm of the operator S:

‖S‖2 ≤ (1− q)/(1 + q) ≡ γ1, (3.8)

where

q =
√

(1− b21)
cosh

(
H
√

1− b21
)
− 1

sinh
(
H
√

1− b21
) · (3.9)

Proof. Properties (1–3) can be easily obtained using the following relationships:

0 = (Aφ,ψ) = (φ, ψ)L2,+ − (φ, ψ)L2,− + (φ,A∗ψ) = (φ, ψ)L2,+ − (φ, ψ)L2,− , (3.10)

i.e.
(φ, ψ(Γ))L2,+ = (φ(Γ), ψ)L2,− , (Sφ(Γ), ψ(Γ))L2,+ = (φ(Γ), S

∗ψ(Γ))L2,− , (3.11)
where φ and ψ are solutions of problems (2.1–2.3) (f = 0) and (3.3–3.5), respectively. Estimate (3.8) is a simple
corollary of Theorem 2.3. �

3.3. In the general case operator S is not compact. Indeed, suppose that b(z) ≡ 0, then

φ = G1v = l−1v ≡ φT , Sv ≡ ST v = P(+)φT = g = (g1, g2) ∈ L2,+ ∀v ∈ L2,−, (3.12)

where g1(ϕ, µ) = v2(ϕ, µ)e−
H
|µ| , µ < 0 and g2(ϕ, µ) = v1(ϕ, µ)e−

H
|µ| , µ > 0. We see that S ≡ ST : L2,− → L2,+

is bounded, while ST is not compact.
Let us prove the compactness of “a part of S”. Introduce this “part” as follows

SR = S − ST . (3.13)

To investigate the properties of SR let us write at first an expression for this operators.
From (2.5) we have:

φ = φT + φR,

LφR = bB0φR + bB0φT , φR = 0 on Γ−,
φR = L−1bB0φR + L−1bB0φT ,

φR =
∞∑
i=0

(L−1bB0)iL−1bB0φT =
∞∑
i=0

(L−1bB0)iL−1bB0l
−1v = (I − L−1bB0)−1L−1bB0φT .

So, SR = P(+)

∞∑
i=0

(L−1bB0)iL−1bB0l
−1 = P(+)(L− bB0)−1bB0l

−1 and the following statement are valid.

Lemma 3.1. The operator S can be represented as S = SR + ST , where

ST = P(+)l
−1, SR = P(+)

∞∑
i=0

(L−1bB0)iL−1bB0l
−1 = P(+)(L− bB0)−1bB0l

−1.

Here, the “transmission part” ST of S is a bounded operator from L2,− into L2,+. The “reflection part” SR
of S is a compact operator from L2,− into L2,+.



266 V.I. AGOSHKOV AND C. BARDOS

Proof. The expressions for SR, ST follows from the above considerations. One needs to prove the compactness
of SR only. The operator l−1 is bounded from L2,− into H1

2 , the operator B0 is compact from H1
2 into L2 [5]

and the operator P(+)(L− bB0)−1b is bounded from L2 into L2,+ (see, Th. 2.1 and trace theorems [5]). Hence,
the operator SR : L2,− → L2,+ is compact. �

3.4. Consider now a “specific case” of S – the restriction of S to the subspace L
(0)
2,− that we denote

by S1 : S1v ≡ Sv ∀v ∈ L(0)
2,−. So,

S1 = SP1, S1 : L(0)
2,− → L2,+, D(S1) = L

(0)
2,−, R(S1) ⊂ L2,+.

It is easily seen that
S1 = S11 + S21, (3.14)

where
S11 ≡ P1SRP1 = P1SP1 : L(0)

2,− → L
(0)
2,+,

S21 ≡ P2SRP1 + P2STP1 = P2SP1 : L(0)
2,− → P2L2,+.

Note, that P1STP1v ≡ 0 ∀v ∈ L2,−. The estimates and statements proved above for S are valid for S1 also.
Some estimates for S21 are given by the following lemma:

Lemma 3.2 [28]. The estimates

‖P2SRP1‖ ≤
b1√

1− b1
e−

(1−b1)H
2 , ‖S21‖ ≤

b1√
1− b1

e−
(1−b1)H

2 + e−H (3.15)

are valid.

Consider the sequence H = Hj , j = 1, 2, . . . (Hj →∞). Let φj be the solution of (3.1) as H = Hj , v ∈ L(0)
2,−.

Assume that Hi > Hj for some i, j. We extend φj to (Xi ≡ (0, 2π]× [−1, 1]× (0,Hi)) \Xj as follows

φ̃j(ϕ, µ, z) =
{
φj(ϕ, µ,Hj) e−(z−Hj)/µ, µ > 0; 0, µ < 0

}
·

Then function εji = φ̃j − φi is a solution of

Aεji = fj in Xi, εji = 0 on Γi−,

where
fj = {0, z ∈ (0,Hj); −bB0φ̃j , z ∈ (Hj ,Hi)},

‖fj‖L2(Xi) ≤ Cb1 ·

 2π∫
0

dϕ

∫ 1

0

µ|φj(ϕ, µ,Hj)|2 dµ

1/2

= Cb1‖S(j)
21 v‖L2.+

≤ Cb1

(
e−Hj +

b1√
1− b1

e−
(1−b1)Hj

2

)
‖v‖(0)

L2,−
→ 0 as Hj →∞

and S
(j)
21 ≡ S21 as H = Hj . Then 2π∫

0

0∫
−1

|µ| |εji|2 dϕdµ


1
2

= ‖(S(i)
11 − S

j
11)v‖

L
(0)
2,+
≤ C‖εji‖H1

2(Xi) ≤ C‖fj‖L2(Xi) → 0, i, j →∞.
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We introduce operator S(∞):

S(∞)v ≡ S(∞)
11 v = lim

j→∞
S

(j)
11 v ∀v ∈ L

(0)
2,−, S(∞) : L(0)

2,− → L
(0)
2,+. (3.16)

Lemma 3.3. Operator S(∞) is compact.

Proof. Since the operators S(j)
11 , j = 1, 2, . . . , are compact then S(∞) = lim

j→∞
S

(j)
11 is compact also. �

Remark. The compactness of S(∞) is proved also in [33].

Lemma 3.4. Let φ = G1v be a solution of (3.1) as H =∞ and v ∈ L(0)
2,−. Then

‖S(∞)v‖2
L

(0)
2,+
≤ 1

2
‖bB0φ‖2L2(X∞). (3.17)

Proof. Let φj be the solution of (3.1) as H = Hj . Then

‖v‖2
L

(0)
2,−

=
∥∥∥∥µ ∂φj∂z

∥∥∥∥2

+ ‖φj‖2 + ‖S(j)v‖2L2,+
− ‖bB0φj‖2 ≥ ‖φ0

j‖2H1
2 (Xj)

+ ‖Sjv‖2L2,+
− ‖bB0φj‖2L2(Xj)

,

where φ0
j is the solution of

−µ2
∂2φ0

j

∂z2
+ φ0

i = 0 in Xj , φ
0
j = v on Γ(j)

− , φ0
j = S(j)v on Γ(j)

+ .

Since
lim
j→∞

‖φ0
j‖2H1

2 (Xj)
= ‖v‖2

L
(0)
2,−

+ ‖S(∞)v‖2
L

(0)
2,+
, lim

j→∞
‖S(j)v‖2L2,+

= ‖S(∞)v‖2
L

(0)
2,+
,

then
‖v‖2

L
(0)
2,−
≥ ‖v‖2

L
(0)
2,−

+ 2‖S(∞)v‖2
L

(0)
2,+
− ‖bB0φ‖2L2(X∞),

where φ = G1v = lim
j→∞

φj and (3.17) holds. �

3.5. Now let us consider the problems with nontrivial ker(S). We begin the consideration from the case when
H =∞ and S = S(∞).

Introduce the following set:

K =
{
φ ∈ H1

2 : (φ = G1v)
⋂

(bB0φ = 0 ∀z ≥ 0), v ∈ L(0)
2,−

}
·

The functions φ(m)
l = {P (m)

l eimϕe−
z
µ , µ > 0; 0, µ < 0}, m ≥ N + 1 belong to K. So, K is nontrivial. It is

easily seen also that all functions from K satisfy the following relations

b

2π∫
0

1∫
0

p(z, µ0)v(ϕ′, µ′) e
−z
µ′ dϕ′dµ′ = 0 ∀z ≥ 0,

φ(ϕ, µ, z) =
{
v(ϕ, µ) e

−z
µ , µ > 0; 0, µ < 0

}
·
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If b > 0, wl(z) > 0, then

1∫
0

P
(m)
l (µ′)

2π∫
0

eimϕ
′
v(ϕ′, µ′) e

−z
µ′ dµ′dϕ′ = 0 ∀z ≥ 0, l = 0, 1, . . . , N, m = 0, 1, . . . , l

for ∀φ ∈ K. From (3.17) and the properties of K we have the following statements.

Lemma 3.5. Let φ = G1v be a solution of (3.1) as H =∞ and v ∈ L(0)
2,−. (1) If φ ∈ K, then v ∈ ker(S(∞)).

(2) If N <∞ in p(z, µ0) =
N∑
i=0

wl(z)Pl(µ0) then ker(S(∞)) 6= {0} and dim (ker(S(∞))) =∞. (3) If ker(S(∞)) =

{0} then φ = G1v 6∈ K ∀v ∈ L(0)
2,−.

Let us represent the solution of the following adjoint problem

A∗q = 0 in X, q = w on Γ+, (3.18)

where X = X∞, w ∈ L(0)
2,+, as q = qT + qR, where qT and qR are defined by

L∗qT = 0 in X, qT = w on Γ+, (3.19)

L∗qR = bB0qR + bB0qT in X, qR = 0 on Γ+. (3.20)
Consider the following equality for the solution φR of (3.15) and q:

(bB0φT , q) + (φR, q)L2,− = (φR, q)L2,+ + (φR, A∗q). (3.21)

Since φR = 0 on Γ−, A∗q = 0 in X , q = qT + qR, qR = 0 on Γ+, then we have

(bB0φT , qT + qR) = (φR, qT )L2,+ . (3.22)

Assume that p(z, µ0) = p(z,−µ0) and v ∈ ker(S(∞)) 6= {0}, then φR = S(∞)v = 0 on Γ+ and

(bB0φT , qT ) + (bB0φT , (L∗ − bB0)−1bB0qT ) = 0. (3.23)

Let us set w = Uv in (3.19). It is easy to see that in this case qT = UφT . Since B0UφT = B0φT , then
from (3.23)

(bB0φT , φT ) + (bB0φT , (L∗ − bB0)−1bB0φT ) = 0, (bB0φT , φT ) = 0, bB0φT = 0. (3.24)

From (3.24) and (3.17) we conclude that the following lemma is valid.

Lemma 3.6. Suppose that p(z, µ0) = p(z,−µ0) and 0 < b(z) ≤ b1 < 1; then v ∈ ker(S(∞)) if and only if
φ = G1v ∈ K.

Consider a specific case of the operator B0. Assume that

p(z, µ0) = pN(z, µ0) + ε(pev(µ0)− pod(µ0)), (3.25)

where

pN (z, µ0) = pN(z,−µ0) =
N∑
l=0

wl(z)Pl(µ0), 0 ≤ wl(z) < w0 = 1,
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0 < ε = const� 1 is a positive small value,

pev(µ0) = pev(−µ0) =
∞∑
l=0

α2lP2l(µ0), pod(µ0) = −pod(−µ0) =
∞∑
l=1

α2l−1P2l−1(µ0)

and 0 < α < 1 is a given constant. We set

B0φ =
1

4π

2π∫
0

1∫
−1

p(z, µ0)φ(ϕ′, µ′, z) dϕ′dµ′,

where p(z, µ0) is given by (3.25). Let us write B0φ in the following form

B0φ = Bevφ− εBodφ, (3.26)

where

Bevφ =
1

4π

2π∫
0

1∫
−1

(pN + εpev)φdϕ′dµ′, Bodφ =
1

4π

2π∫
0

1∫
−1

podφdϕ
′dµ′.

Lemma 3.7. If b > 0 and p(z, µ0) is given by (3.25), then ker(S(∞)) = {0}.

Proof. Assume that ker(S(∞)) 6= {0}, (v 6≡ 0) ∈ ker(S(∞)) and w = Uv in (3.19). From (3.22) we obtain the
following equality:

(bB0φT , UφT ) + (bB0φT , (L∗ − bB0)−1bB0UφT ) = 0.
Since B0UφT = BevUφT − εBodUφT = BevφT + εBodφT then

(b(Bev + εBod)φT , φT ) + (b(Bev − εBod)φT , (L∗ − bB0)−1(b(Bev + εBod)φT ) = 0

or
0 = (b(Bev + εBod)φT , φT ) + ((L∗ − bB0)ψ,ψ)− 2ε(bBodφT , ψ), (3.27)

where ψ = (L∗ − bB0)−1b(Bev + εBod)φT . If ε is sufficiently small, then from (3.27) we obtain the following
relationships:

0 = (b(BevφT , φT ) + ε(bBodφT , φT ) +
1
2
‖ψ‖2L2,− + ((I − bB0)ψ,ψ)− (2εbBodφT , ψ)

≥ (bBevφT , φT ) + ε(bBodφT , φT ) +
1
2
‖ψ‖2L2,− + (1− b1)‖ψ‖2 + ε(bBodψ,ψ)

− 2ε(bBodφT , φT )
1
2 (bBodψ,ψ)

1
2

≥ (bBevφT , φT ) + ε(bBodφT , φT ) +
1
2
‖ψ‖2L2,− + (1− b1)‖ψ‖2 + ε(bBodψ,ψ)− ε(bBodφT , φT )

− ε(bBodψ,ψ) = (bBevφT , φT ) +
1
2
‖ψ‖2L2,− + (1− b1)‖ψ‖2.

Hence, ψ = 0, φT = 0 and v = 0. But, by assumption, v 6≡ 0. This contradiction proves the statement of this
lemma. �

3.6. Let H be finite and
φT = {v1(ϕ, µ) e−z/µ, µ > 0; 0, µ < 0},

K =
{
φ ∈ H1

2 : (φ = G1v)
⋂

(bB0φ = 0 ∀z ≥ 0), v ∈ L(0)
2,−

}
·
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Lemma 3.8. If p(z, µ0) = p(z,−µ0) and B0 is nonnegative then v ∈ ker(SR) iff φ = G1v ∈ K. If p(z, µ0) is of
the form (3.25) then ker(SR) = {0}.

Proof. Let q be the solution of (3.18), where w = Uv, v ∈ ker(SR). Then again,

0 = (bB0φT , qT + qR) = (bB0φT , φT ) + (bB0φT , (L∗ − bB0)−1bB0φT ),

(bB0φT , φT ) = 0, bB0φT = 0

and φR = 0, φ = G1v = φT ∈ K. If φ = G1v ∈ K, then φ = φT , φR = 0 and φR = SRv = 0 on Γ+. So,
v ∈ ker(SR) iff φ = G1v ∈ K.

Assume that p(z, µ0) has form (3.25), then repeating the proof of Lemma 3.8, we obtain other statements of
this lemma. �

Lemma 3.9. If p(z, µ0) = p(z,−µ0), H < ∞ and B0 is nonnegative, then
ker(S1) = {0}.

Proof. Assume that ker(S1) 6= {0} and (v 6≡ 0) ∈ (L(0)
2,−
⋂

ker(S1)). Let q be the solution of (3.18) for w = Uv.
Then

0 = (Aφ, q) = −(v, q)L2,− , (v, q)L2,− = (v, qT )L2,− + (v, qR)L2,− ,

(bB0qT , φ) = (A∗qR, φ) = (qR, v)L2,− ,

0 = (v, qT )L2,− + (bB0qT , φ) = (v, qT )L2,− + (bB0qT , φT ) + (bB0qT , (L− bB0)−1bB0φT ).

Since qT = UφT , v = (v1, v2) ≡ (v1, 0) ∈ L(0)
2,− and (v, qT )L2,− = 0 then

(bB0φT , φT ) + (bB0φT , (L− bB0)−1bB0φT ) = 0, (bB0φT , φT ) = 0, bB0φT = 0, φR = 0,

φ = φT , φ|Γ+ = φ(T )|Γ+ = S1v = 0, v = 0.

So, we conclude that ker(S1) = {0}. �

Let us summarize some of the above statements in the following theorems.

Theorem 3.2. Suppose that H =∞, 0 ≤ b(z) ≤ b1 = const < 1; then for reflection operator S : L(0)
2,− → L

(0)
2,+

the following assertions hold: (1) S = P(+)

∞∑
i=1

(L−1bB0)il−1 and S is compact. (2) ‖S‖2 ≤ (1−
√

1− b21)/(1 +√
1− b21). (3) If p(z, µ0) = p(z,−µ0), 0 < b(z) ≤ b1 < 1 and B0 is nonnegative then v ∈ ker(S) iff φ ≡ G1v ∈ K.

(4) If p(z, µ0) has the form (3.25) and 0 < b(z) ≤ b1 < 1, then ker(S) = {0}.

Theorem 3.3. Suppoze that H <∞, 0 ≤ b(z) ≤ b1 = const < 1; then for operator S : L2,− → L2,+ the follow-
ing assertions hold: (1) S = SR + ST , where ST = P(+)l

−1 : L2,− → L2,+ is a bounded and invertable operator,

SR = P(+)

∞∑
i=1

(L−1bB0)il−1 : L2,− → L2,+ is compact. (2) ‖S‖2 ≤ (1 − q)/(1 + q), where q is given by (3.9).

(3) If p(z, µ0) = p(z,−µ0) and B0 is nonnegative,then ker(S1) = {0} and v ∈ ker(SRP1) iff φ ≡ G1v ∈ K.
(4) If p(z, µ0) is given by (3.25), then ker(SRP1) = {0}.
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3.7. Consider now a specific radiative transfer problem – the boundary value problem for the function φ(µ, z)

= (1/2π)
2π∫
0

φ(ϕ, µ, z) dϕ assuming p(z, µ0) ≡ 1:

A0φ ≡ µ
∂φ

∂z
+ φ(µ, z)− b(z)

2

1∫
−1

φ(µ′, z) dµ′ = f(µ, z) in X ≡ (−1, 1)× (0,H), (3.28)

φ = v1(µ), z = 0, µ > 0; φ = v2(µ), z = H, µ < 0.

In the sequel we use the following lemma.

Lemma 3.10 [28]. If f(x) ∈ L2(0,∞), v(µ) ∈ L2(0, 1) and

∞∫
0

e−
x
µ f(x)

dx

µ
= 0, ∀µ ∈ (0, 1), (3.29)

1∫
0

e−
x
µ v(µ) dµ = 0, ∀x ∈ (0,∞), (3.30)

then f(x) = 0, v(µ) = 0.

To investigate the problem (3.28) and the following boundary-value problem

A0φ = 0 in X, φ = v on Γ− (3.31)

we introduce all “notions” which have been used earlier (functional spaces H1
2 , . . . , L

(0)
2,−,Γ−,Γ+, . . . , S, SR, ST ).

We mean here only that all these “notions” are independent of ϕ ∈ (0, 2π]. We point out that

B0φ =
1
2

1∫
−1

φ(µ, z) dµ.

Let us consider the problem (3.31) as H →∞ and introduce the set K0:

K0 =
{
φ ∈ H1

2 : (φ = G1v)
⋂

(bB0φ) = 0, ∀z ≥ 0, ∀v ∈ L(0)
2,−

}
·

It is easily seen that K0 = {0}. Indeed, suppose that v ∈ L
(0)
2,−, φ = G1v, bB0φ = 0. Then φ should have

the following form: φ(µ, z) = {v(µ) e−z/µ, µ > 0; 0, µ < 0}. Using the restriction bB0φ = 0, we obtain

b
1∫
0

e−z/µv(µ) dµ = 0, z ≥ 0. According to Lemma 3.10 we conclude that v(µ) = 0 and K0 = {0}.

Suppose that ker(S(∞)) 6= {0}, v 6≡ 0 ∈ ker(S(∞)). Then

0 = Sv = φ(µ, 0) =

∞∫
0

e−
x
|µ| b(z)B0φ

dx

|µ| , µ < 0
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where φ = G1v. Using Lemma 3.10, we have: i) b(z)B0φ = 0; ii) φ = {ve−z/µ, µ < 0; µ > 0}; iii)

B0φ =
1∫
0

ve−z/µ dµ = 0 ∀z ≥ 0; iv) v(µ) = 0. The contradiction proves the statement: ker(S(∞)) = {0}.

So, the following theorem is valid.

Theorem 3.4. Suppose that H → ∞ and 0 < b ≤ b1 < 1 in the problem (3.31). Then: (1) S(∞) is com-
pact. (2) ‖S(∞)‖2 ≤ (1 −

√
1− b21)/(1 +

√
1− b21). (3) ker(S(∞)) = ker((S(∞))∗) = {0}. (4) There exists the

inverse operator (S(∞))−1, which is not bounded on the range R(S(∞)). (5) The range R(S(∞)) is dense in L
(0)
2,+.

(The proof of this theorem follows from the above considerations and the theory of compact operators.)

4. Solvability of inverse problems

4.1. With the use of the above operators problem (2.11) can be written in the following form:

Problem 1. Given φ(0) ∈ H1
2 , φobs ∈ L2,+, find φ ∈ H1

2 , q ∈ H1
2 , v ∈ L2,− such that

Aφ = 0 in X, φ = v on Γ−,

A∗q = 0 in X, q = φ− (φobs − φ(0)) on Γ+,

αv + S∗P(+)q = 0 on Γ− (4.1)
or as the equation for v: given φobs, find v ∈ L2,− such that

αv + S∗Sv = S∗P(+)(φobs − φ(0)) on Γ− (4.2)

or as a weak form of (4.2): find v ∈ L2,− such that

α(v, w)L2,− + (Sv, Sw)L2,+ = (P(+)(φobs − φ(0)), Sw)L2,+ ∀w ∈ L2,−. (4.3)

If H →∞, P(+)(φobs − φ(0)) ∈ P1L2,+ = L
(0)
2,+, v ∈ L(0)

2,− in (2.11), then we have the second inverse problem.

Problem 2. Given P(+)(φobs − φ(0)) ∈ L(0)
2,+ find v ∈ L(0)

2,− such that

α(v, w)
L

(0)
2,−

+ (S(∞)v, S(∞)w)
L

(0)
2,+

= (P(+)(φobs − φ(0)), S(∞)w)
L

(0)
2,+
∀w ∈ L(0)

2,− (4.4)

or forms (4.1, 4.2) with S, S∗ replaced by S(∞), (S(∞))∗ hold.

4.2. Using the properties of the above eflection operators, we formulate some statements on the solvability of
Problems 1, 2.

Throughout this section we assume ker(S) = ker(S∗) = {0} (see, Ths. 3.2–3.4) and we consider only this
case of Problems 1, 2.

Some solvability results will be proved in the presence of additional restrictions and the following remark
may be useful. It is easy to see that the following assumptions are equivalent: (i) There exists a unique solution
φ0 ∈ H1

2 , v0 ∈ L2,− of (4.1) as α = 0; (ii) S−1P(+)(φobs−φ(0)) ∈ L2,−; (iii) there exists a function φ1 ∈ H1
2 such

that Aφ1 = 0 in X and φ1 = P(+)(φobs − φ(0)) on Γ+.
Now let us formulate some conclusions from statements of the previous sections. The domain D(S) of

S is the whole space L2,−, the range R(S) is a subset of L2,+, D(S∗) = L2,+, R(S∗) ⊂ L2,− and the op-
erators S, S∗ are closed. Since L2,−, L2,+ are Hilbert spaces, S, S∗ are closed and ker(S) = ker(S∗) = {0}
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then R(S) = L2,+, R(S∗) = L2,−. However, S−1, (S∗)−1 are unbounded for any H ≤ ∞. Therefore R(S)
6= L2,+, R(S∗) 6= L2,− and S, S∗ are not “normal solvable” and not Fredholm operators. Hence, the equations
Sv = g, S∗q = g1 can be “dense solvable” only (if additional restrictions to g ∈ L2,+, g1 ∈ L2,− are not imposed)
and Problems 1, 2 are ill-posed.

Let HS be the completion of L2,− with respect to norm ‖v‖HS ≡ ‖Sv‖L2,+ . Since R(S) = L2,+ then for any
v ∈ HS there exists a function φ ∈ L2,+ such that Sv = φ and ‖v‖HS = ‖φ‖L2,+ ; if v ∈ L2,− then φ ∈ R(S).
So, the spaces HS , L2,+ are isometric. Above remarks will be used below in proving solvability results.

Let us consider the equation (4.2). Using properties of S we conclude that the following statement holds.

Theorem 4.1. The following assertions hold:
(1) If α > 0 then the inverse problem (4.2) ((4.1), (2.8)) has a unique solution and the estimates

‖φ‖H1
2

+ ‖v‖L2,− ≤ C(‖f‖+ ‖φobs‖L2,+), (4.5)

(1 + α)‖φ‖2L2,+
+ α‖v‖2L2,− + 2α(1− b1)‖φ‖2 ≤ ‖P(+)(φobs − φ(0))‖2

are valid, C = C(α) = const <∞.
(2) If α = 0 and φobs,0 ≡ P(+)(φobs − φ(0)) is a function from L2,+ then (4.2) has a unique weak solution

v0 = (S∗S)−1S∗φobs,0 and the estimate
‖v0‖HS ≤ ‖φobs,0‖L2,+ (4.6)

is valid. The function v0 is a weak solution of the equation Sv = φobs,0 also, i.e. the relation

(Sv,w)L2,+ = (φobs,0, w)L2,+ ∀w ∈ L2,+

is satisfied. If φobs,0 ∈ R(S) then v0 = S−1φobs,0 is the solution of “an exact controllability problem”; if
S−1φobs,0 ∈ L2,− then v0 ∈ L2,− also.

(3) There exists a sufficiently small positive α such that the solution φ ≡ φ(v) of (4.1) satisfies

‖φ− φobs,0‖L2,+ ≤ ε (4.7)

for given ε > 0, i.e. (4.1) is the “approximate cotrollability problem” and it has a solution ∀φobs,0 ∈ L2,+.
(4) If φ, v is a solution of (4.1) as α > 0 while φ0, v0 is a solution of this problem as α = 0 then

‖S∗(φ− φ0)‖HS = ‖S∗S(v − v0)‖HS ≤ α‖φobs,0‖L2,+ (4.8)

for φobs,0 ∈ L2,+ and

‖φ− φ0‖L2,+ = ‖v − v0‖HS ≤ (α/2)1/2‖S−1φobs,0‖L2,− (4.9)

for S−1φobs,0 ∈ L2,−.

Proof. 1. Since
(αv + S∗Sv, v)L2,− = α‖v‖2L2,− + ‖Sv‖2L2,+

,

then the problem (4.2) is correctly solvable and

‖v‖2L2,− ≤
1
α
‖P(+)(φobs − φ(0))‖L2,+‖Sv‖L2,+ ≤

1
α
‖φobs − φ(0)‖L2,+‖S‖ ‖v‖L2,− ≤

γ
1/2
1

α
‖φobs − φ(0)‖L2,+‖v‖L2,−.
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So,

‖v‖L2,− ≤
γ

1/2
1

α
‖φobs − φ(0)‖L2,+ ,

and the estimate (4.5) is valid.
Let us consider now a weak statement of the boundary value problem for φ:(

φ,−µ ∂w
∂z

+ w − bB0w

)
+ (φ,w)L2,+ +

1
α

(S∗P(+)φ,w)L2,− =
1
α

(S∗P(+)(φobs − φ(0), w))L2,− ,

where ∀w ∈ H1
2 and let us use the boundary condition for φ in the following form:

φ+
1
α
S∗P(+)(φ− (φobs − φ(0))) = 0 on Γ−.

Setting w = φ, we have:

1
2
‖φ‖2L2,+

+
1
2
‖φ‖2L2,− + (Tφ, φ) +

1
α

(
S∗P(+)φ, φ)L2,− =

1
α

(S∗P(+)(φobs − φ(0)), φ)
)
L2,−

.

Since

(S∗P(+)φ, φ)L2,− = ‖φ‖2L2,+
, |(S∗P(+)(φobs − φ), φ)L2,− | = |(P(+)(φobs − φ(0)), φ)L2,+ |

≤ ‖φobs − φ(0)‖L2,+‖φ‖L2,+ ≤
1
2
‖φobs − φ(0)‖2L2,+

+
1
2
‖φ‖2L2,+

,

(Tφ, φ) ≥ (1− b1) ‖φ‖2,

then
(1 + α) ‖φ‖2L2,+

+ α ‖φ‖2L2,− + 2α(1− b1) ‖φ‖2 ≤ ‖φobs − φ(0)‖2L2,− ,

i.e. we have obtained the second estimate from (4.5).

2. If α = 0 then (4.2) is equivalent to the following equation

S∗Sv0 = S∗φobs,0. (4.10)

By usual considerations of the variational problem theory, the existence of a unique weak solution
v0 = (S∗S)−1S∗φobs,0 of (4.10) and the estimate (4.6) are proved. Since R(S) ⊂ D(S∗) = L2,+ and ker(S∗) = 0
then (4.10) is equivalent to the equation Sv0 = φobs,0, i.e. v0 is a weak solution of this equation also. If
φobs,0 ∈ R(S) then v0 = S−1φobs,0 and v0 ∈ L2,− for S−1φobs,0 ∈ L2,−.

3. The proof of this assertion is similar to proof from [35] (p. 285). Let φobs,0 be an arbitrary function from
L2,+. Since R(S) = L2,+ then there exists w ∈ L2.− such that ‖φ(w)− φobs,0‖L2,+ ≤ ε1 for given ε1 > 0, where
φ ≡ φ(w) is the solution of

Aφ = 0 in X, φ = w on Γ−.

If φ = φ(v), v is a solution of (4.1) for α > 0 then

J(φ(v), v) ≤ J(φ(w), w) ≤ α‖w‖2L2,− + ε21.
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Let us fix ε1, w and choose a sufficiently small α such that α‖w‖2L2,−
≤ ε21. Then

‖φ(v)− φobs,0‖2L2,+
≤ J(φ(v), v) ≤ 2ε21 ≡ ε2.

The last relation implies (4.7).

4. It is easy to see that
SS∗S(v − v0) = −α(α(SS∗)−1 + I)φobs,0.

If φobs,0 ∈ L2,+ then
‖SS∗S(v − v0)‖L2,+ = ‖S∗S(v − v0)‖HS ≤ α‖φobs,0‖L2,+ .

Let us write down now the following equalities

v = (αI + S∗S)−1S∗φobs,0 = (αI + S∗S)−1S∗Sv0,

α(v, v)L2,− + ‖v − v0‖2HS = α(v, v0)L2,− . (4.11)

If S−1φobs,0 ∈ L2,− then ‖v‖L2,− ≤ ‖v0‖L2,− and (4.9) is a simple consequence of (4.11). �

4.3. In Problem 2 the operators S = S(∞), S∗ = (S(∞))∗ are compact and (αI + S∗S) is a “normal solv-
able” and Fredholm operator. Hence, some special theoretical approaches can be used to develope Problem 2
(for example, singular spectral expansions of operators, etc.). But the principal solvability results remain the
same as in Problem 1.

Theorem 4.2. The following statements are valid:
(1) Problem 1 for α > 0 is equivalent to the second-type operator equation for v with Fredholm operator and

to the first-type equation with compact operator at α = 0.
(2) If α > 0 then Problem 2 has a unique solution for φobs,0 ≡ P(+)(φobs−φ(0)) ∈ L(0)

2,+ and the estimate (4.5)
is valid. If α = 0, P(+)(φobs − φ(0)) ∈ R(S(∞)) then there exists a unique solution of Problem 2:

v = (S(∞))−1(P(+)(φobs − φ(0))), (4.12)

i.e. “the problem of exact controllability” has a unique solution.
(3) If φobs,0 is an arbitrary function from L

(0)
2,+ then there exists a sufficiently small α > 0 such that the

solution φ = φ(v) of (4.2) ((2.11), (4.1)) for α > 0 satisfies

‖φ− φobs,0‖L(0)
2,+
≤ ε (4.13)

for given ε > 0.
(4) The estimates

‖(S(∞))∗(φ− φ0)‖HS ≤ α‖φobs,0‖L(0)
2,+
,

where φobs,0 ∈ L(0)
2,+, and

‖φ− φ0‖L(0)
2,+

= ‖v − v0‖HS ≤ (α/2)1/2‖(S(∞))−1φobs,0‖L(0)
2,−
,

where (S(∞))−1φobs,0 ∈ L(0)
2,−, are valid.
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(The proof of Th. 4.2 repeats in the whole the proof of the previous theorem.)

Remark. Consider the system of equations given by (4.1). Assume that α = 0, P(+)(φobs−φ(0)) ∈ R(S(∞)) and
there exist S−1, (S∗)−1. Then from (4.1) we obtain: P(+)q = 0, φ = (φobs − φ(0)) on Γ+, v = S−1P(+)(φobs −
φ(0)) on Γ− and

Aφ = 0 in X, φ = S−1P(+)(φobs − φ(0)) on Γ−, φ = φobs − φ(0) on Γ+, (4.14)

i.e. “the exact controllability problem” has a solution. Assume that some function φ ∈ H1
2 satisfies (4.14).

Then from (4.14) and (4.1):

v = S−1P(+)(φobs − φ(0)) on Γ−, q = 0 in X, αv = 0 on Γ−.

If v 6≡ 0, then α should be equal to zero. So, we conclude: the exact controllability in (4.1) is admitted iff α = 0
and P(+)(φobs − φ(0)) ∈ R(S(∞)). �

5. On numerical solution of inverse problems

Statements of the previous section allow to conclude that an approximate solution of Problem 1 (2) calculated
for small α > 0, can be considered as an approximate solution of this problem as α = 0 also. To develope
appropriate approximate solutions of Problems 1, 2 for α > 0 various iterative algorithms can be used [28-31].
Below we consider an example of such procedures.

To construct an approximate solution of (4.1) we can apply the iterative algorithm given by:

Aφn = 0 in X, φn = vn on Γ−,

A∗qn = 0 in X, qn = φn − (φobs − φ(0)) on Γ+, (5.1)

vn+1 = vn − τ(αvn + qn) on Γ−, n = 0, 1, . . . ,
where v0 ∈ L2,− , τ = 2/(2α+ γ1) and γ1 is given by (3.8).

In view of the reflection operator properties and the iterative processes theory results,

Lemma 5.1 [28]. If α > 0 and τ = 2/(2α+ γ1), then the algorithm (5.1) converges and the estimate

‖φ− φn‖H1
2

+ ‖q − qn‖H1
2

+ ‖v − vn‖L2,− ≤ C
(

γ1

2α+ γ1

)n
‖v − v0‖L2,−

is true, where C = const > 0.

To solve the subproblems from (5.1) we can use known numerical methods [2, 5, 6, 9, 10]. Since the errors
of these methods are well-known then we can investigate the convergence property of (5.1) taking into account
also numerical errors. But we do not discuss this issue in the paper.

Conclusion

Let us summarize some results formulated in this paper. We considered the methodology of analysis and
numerical solution of some inverse radiative problems. This methodology is based on the optimal control theory
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approaches, solvability results for first- or second-type operator equations and on modern iterative processes.
We hope that it will be applied to other inverse problems for transport equations.

We saw that the crucial issue of solvability and numerical solution of such problems is connected with
properties of reflection operetors S, which are investigated in the “direct” boundary-value problems for transport
equations. If S consists of bounded and compact parts then the theory of second-type equations is a basis for
consideration of an inverse problem; if S is compact then results for the first-type operator equation is such
basis.

The exact controllability problems considered above are rather specific. If S is compact, ker(S) = 0 and
P(+)(φobs − φ(0)) ∈ R(S) then each of such problems has a unique solution. One of the practical implications
of this statement is the following: since S−1 is unbounded then the considered inverse problem is ill-posed and
various regularization procedures are useful in numerical procedures. If P(+)(φobs − φ(0)) is a function from
L2,+ then (1.3) has no solution, but it can possess a generalized solution, and (1.3) should be replaced by a
weak statement (like (2.8)). The presence of estimates (4.7–4.9, 4.13) is important in numerical practice and it
means that approximate solutions of inverse problems can be obtained for P(+)(φobs − φ(0)) ∈ L2,+.

Let us conclude this paper with remarks that can useful also in practical calculations.
If α > 0, then equation (4.2) has a “good” operator (αI + S∗S). Using the iterative processes theory, it is

possible to write a lot of iterative algorithms to solve (4.1). We can also optimize the convergence rate of these
algorithms using properties of S, S∗ presented early [29-31].

To solve (4.1) as H → ∞, v ∈ L(0)
2,−, (φobs − φ(0)) ∈ L(0)

2,+ the process (5.1) (or some others algorithms) can
be applied also. If P(+)(φobs − φ(0)) ∈ R(S(∞)), then there is a possibility to set α = 0. However, numerical
calculations can be unstable in this case.

Assume that p ≡ pN (z, µ0) = pN(z,−µ0) is considered in the original statement of boundary value problems.
To have the property “ker(S) = 0” we can replace this p(z, µ0) by the perturbed one of form (3.25). This
perturbation of the problems can be considered also as a regularization of inverse problems considered above.

The present investigation has shown the potential of optimal control approaches for investigation and nu-
merical solution of inverse radiative transfer problems and has suggested many directions for further work.
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