@article{COCV_2000__5__279_0, author = {Blot, Jo\"el and Hayek, Na{\"\i}la}, title = {Sufficient conditions for infinite-horizon calculus of variations problems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {279--292}, publisher = {EDP-Sciences}, volume = {5}, year = {2000}, mrnumber = {1765427}, zbl = {0957.49016}, language = {en}, url = {http://archive.numdam.org/item/COCV_2000__5__279_0/} }
TY - JOUR AU - Blot, Joël AU - Hayek, Naïla TI - Sufficient conditions for infinite-horizon calculus of variations problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2000 SP - 279 EP - 292 VL - 5 PB - EDP-Sciences UR - http://archive.numdam.org/item/COCV_2000__5__279_0/ LA - en ID - COCV_2000__5__279_0 ER -
%0 Journal Article %A Blot, Joël %A Hayek, Naïla %T Sufficient conditions for infinite-horizon calculus of variations problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2000 %P 279-292 %V 5 %I EDP-Sciences %U http://archive.numdam.org/item/COCV_2000__5__279_0/ %G en %F COCV_2000__5__279_0
Blot, Joël; Hayek, Naïla. Sufficient conditions for infinite-horizon calculus of variations problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 279-292. http://archive.numdam.org/item/COCV_2000__5__279_0/
[1] Commande optimale, French translation. Mir, Moscow ( 1982). | MR
, and ,[2] Applications of Control Theory to Economic Growth. Math, of the Decision Sciences, edited by G.B. Dantzig and A.F. Veinott Jr. ( 1968). | MR | Zbl
,[3] Optimality in Infinite-Horizon Problems under Signs Conditions. J. Optim. Theory Appl. (to appear). | Zbl
and ,[4] Second-Order Necessary Conditions for the Infinite-Horizon Variational Problems. Math. Oper. Res. 21 ( 1996) 979-990. | MR | Zbl
and ,[5] First-Order Necessary Conditions for the Infinite-Horizon Variational Problems. J. Optim. Theory Appl. 88 ( 1996) 339-364. | MR | Zbl
and ,[6] Fonctions d'une variable réelle. Hermann, Paris ( 1976). | MR
,[7] Infinite Horizon Optimal Control, Deterministic and Stochastic Systems, Second Edition. Springer-Verlag, Berlin ( 1991). | Zbl
, and ,[8] Calcul Différentiel, Hermann, Paris ( 1967). | MR | Zbl
,[9] Optimization Theory and Applications: Problems with Ordinary Differential Equations. Springer-Verlag, New York ( 1983). | MR | Zbl
,[10] Topology. Allyn and Bacon, Boston ( 1966). | MR | Zbl
,[11] Calculus of Variations, with Applications. Dover Pub. Inc., New York ( 1985). | MR | Zbl
,[12] Deterministic and Stochastic Optimal Control. Springer-Verlag, New York ( 1975). | MR | Zbl
and ,[13] Controlled Markov Processes and Viscosity Solutions. Springer-Verlag, New York ( 1993). | MR | Zbl
and ,[14] Calculus of Variations ISpringer-Verlag, Berlin ( 1996). | Zbl
and ,[15] Éléments de topologie algébrique. Hermann, Paris ( 1971). | MR | Zbl
,[16] A Survey of the Maximum Principles for Optimal Control Problems with State Constraints. SIAM Rev. 37 ( 1995) 181-218. | MR | Zbl
, and ,[17] Calculus of Variations and Optimal Control Theory. Robert E. Krieger Publ. Comp., Huntington, N.Y. ( 1980). | MR | Zbl
,[18] A Sufficiency Theorem for Optimal Control. J. Optim. Theory Appl. VIII ( 1971) 169-174. | MR | Zbl
and ,[19] Optimal Control Theory and Static Optimization in Economics. Cambridge University Press, New York ( 1992). | MR
and ,[20] Sufficient Conditions for the Optimal Control of Nonlinear Systems. SIAM J. Control IV ( 1966) 139-152. | MR | Zbl
,[21] Sufficient Conditions in the Calculus of Variations and in the Theory of Optimal Control. Proc. Amer. Math. Soc. 39 ( 1973) 535-539. | MR | Zbl
,[22] Théorie Mathématique des Processus Optimaux, French Edition. Mir, Moscow ( 1974).
, , and ,[23] Introduction to the Calculus of Variations. McGraw-Hill, New York ( 1969).
,[24] Macroeconomic Theory, Second Edition. Academic Press, New York ( 1986). | MR | Zbl
,[25] Sufficient Conditions in Optimal Control Theory, Internat. Econom. Rev. 18 ( 1977). | MR | Zbl
and ,[26] Cours d'Analyse de l'École Polytechnique, Tome 1. Hermann, Paris ( 1967).
,[27] Topologie Générale et Analyse Fonctionnelle. Hermann, Paris ( 1970). | MR | Zbl
,[28] Sufficient Conditions for Nonconvex Control Problems with State Constraints. J. Optim. Theory Appl. 62 ( 1989) 289-310. | MR | Zbl
,[29] Variational Calculus with Elementary Convexity. Springer-Verlag, New York ( 1983). | MR | Zbl
,[30] First and Second Order Sufficient Conditions for Optimal Control and Calculus of Variations. Appl. Math. Optim. 11 ( 1984) 209-226. | MR | Zbl
,[31] Existence and Structure of Optimal Solutions of Variational Problems, Recent Developments in Optimization Theory and Nonlinear Analysis, edited by Y. Censor and S. Reich. Amer. Math. Soc. Providence, Rhode Island ( 1997) 247-278. | MR | Zbl
,