@article{COCV_2000__5__369_0, author = {Dal Maso, Gianni and Frankowska, H\'el\`ene}, title = {Value functions for {Bolza} problems with discontinuous lagrangians and {Hamilton-Jacobi} inequalities}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {369--393}, publisher = {EDP-Sciences}, volume = {5}, year = {2000}, mrnumber = {1765430}, zbl = {0952.49024}, language = {en}, url = {http://archive.numdam.org/item/COCV_2000__5__369_0/} }
TY - JOUR AU - Dal Maso, Gianni AU - Frankowska, Hélène TI - Value functions for Bolza problems with discontinuous lagrangians and Hamilton-Jacobi inequalities JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2000 SP - 369 EP - 393 VL - 5 PB - EDP-Sciences UR - http://archive.numdam.org/item/COCV_2000__5__369_0/ LA - en ID - COCV_2000__5__369_0 ER -
%0 Journal Article %A Dal Maso, Gianni %A Frankowska, Hélène %T Value functions for Bolza problems with discontinuous lagrangians and Hamilton-Jacobi inequalities %J ESAIM: Control, Optimisation and Calculus of Variations %D 2000 %P 369-393 %V 5 %I EDP-Sciences %U http://archive.numdam.org/item/COCV_2000__5__369_0/ %G en %F COCV_2000__5__369_0
Dal Maso, Gianni; Frankowska, Hélène. Value functions for Bolza problems with discontinuous lagrangians and Hamilton-Jacobi inequalities. ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 369-393. http://archive.numdam.org/item/COCV_2000__5__369_0/
[1] Integral representation of functionals defined on curves of W1, p. Proc. Roy. Soc. Edinburgh Sect. A 128 ( 1998) 193-217. | MR | Zbl
, and ,[2] Lipschitz regularity for minimizers of integral functionals with highly discontinuons integrands. J. Math. Anal. Appl. 142 ( 1989) 301-316. | MR | Zbl
, and ,[3] Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions. Advances in Mathematics, Supplementary Studies, edited by L. Nachbin ( 1981) 160-232. | MR | Zbl
,[4] A survey of viability theory. SIAM J. Control Optim. 28 ( 1990) 749-788. | MR | Zbl
,[5] Viability Theory. Birkhäuser, Boston ( 1991). | MR | Zbl
,[6] Optima and Equilibria. Springer-Verlag, Berlin, Grad. Texts in Math. 140 ( 1993). | MR | Zbl
,[7] Differential Inclusions. Springer-Verlag, Berlin, Grundlehren Math. Wiss. 264 ( 1984). | MR | Zbl
and ,[8] Applied Nonlinear Analysis. Wiley & Sons, New York ( 1984). | MR | Zbl
and ,[9] Set-Valued Analysis. Birkhäuser, Boston ( 1990). | MR | Zbl
and ,[10] Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonian. Comm. Partial Differential Equations 15 ( 1990) 1713-1742. | MR | Zbl
and ,[11] The Wazewski topological method for contingent equations. Ann. Mat. Pura Appl. 87 ( 1970) 271-280. | MR | Zbl
and ,[12] Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations. Longman, Harlow, Pitman Res. Notes Math. Ser. ( 1989). | Zbl
,[13] Optimization Theory and Applications. Problems with Ordinary Differential Equations. Springer-Verlag, Berlin, Appl. Math. 17 ( 1983). | MR | Zbl
,[14] Regular properties of tangent and normal cones. Cahiers de Maths, de la Décision No. 8130 ( 1981).
,[15] Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 ( 1983) 1-42. | MR | Zbl
, ,[16] Integral functionals determined by their minima. Rend. Sem. Mat. Univ. Padova 76 ( 1986) 255-267. | Numdam | MR | Zbl
and ,[17] Probabilités et potentiel. Hermann, Paris ( 1975). | MR | Zbl
, ,[18] L'équation d'Hamilton-Jacobi contingente. C. R. Acad. Sci. Paris Sér. I Math. 304 ( 1987) 295-298. | MR | Zbl
,[19] Optimal trajectories associated to a solution of contingent Hamilton-Jacobi equations. Appl. Math. Optim. 19 ( 1989) 291-311. | MR | Zbl
,[20] Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations, in Proc. of IEEE CDC Conference. Brighton, England ( 1991).
,[21] Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 31 ( 1993) 257-272. | MR | Zbl
,[22] Measurable viability theorems and Hamilton-Jacobi-Bellman equation. J. Differential Equations 116 ( 1995) 265-305. | MR | Zbl
, and ,[23] Extended Hamilton-Jacobi characterization of value functions in optimal control. Preprint Washington University, Seattle ( 1998). | MR
,[24] Derivatives for multivalued mappings with application to game-theoretical problems of control. Problems Control Inform. 14 ( 1985155-168. | MR | Zbl
, and ,[25] On lower semicontinuity of integral functionals. SIAM J. Control Optim. 15 ( 1977) 521-521 and 991-1000. | MR | Zbl
,[26] Weak lower semicontinuity of integral functionals. J. Optim. Theory Appl. 19 ( 1976) 3-16. | MR | Zbl
,[27] Proximal subgradients, marginal values and augmented Lagrangians in nonconvex optimization. Math. Oper. Res. 6 ( 1981) 424-436. | MR | Zbl
,[28] Variational Analysis. Springer-Verlag, Berlin, Grundlehren Math. Wiss. 317 ( 1998). | MR | Zbl
and ,[29] A generalization of the basic equation of the theory of the differential games. Soviet. Math. Dokl. 22 ( 1980) 358-362. | Zbl
,