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ON SOME OPTIMAL CONTROL PROBLEMS FOR THE HEAT RADIATIVE
TRANSFER EQUATION ∗
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1, 2

and Knut Heusermann
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Abstract. This paper is concerned with some optimal control problems for the Stefan-Boltzmann
radiative transfer equation. The objective of the optimisation is to obtain a desired temperature
profile on part of the domain by controlling the source or the shape of the domain. We present two
problems with the same objective functional: an optimal control problem for the intensity and the
position of the heat sources and an optimal shape design problem where the top surface is sought as
control. The problems are analysed and first order necessity conditions in form of variation inequalities
are obtained.
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1. Introduction

Radiative heat exchange can be found in many natural and engineering processes. At low temperature this
exchange is small but at high temperature could be the leading form of heat transfer and in many situations,
like in some forming processes, it is appropriate to model the heat exchange with the pure radiation equation.

Motivated by the desire to remove hot spots and control the temperature distribution we present a systematic
mathematical theory for the optimisation of systems which are appropriately described by this model. We
consider radiative heat exchange in a two-dimensional domain Ω with boundary Γ and radiative source f
governed by the integral boundary equations [16]

u(s) = σT 4(s) s ∈ Γ
u(s)−

∫
Γ
K(s, s′)u(s′) ds′ = f(s) s ∈ Γ, (1.1)

where T is the temperature, u is the radiosity, σ is the Stefan-Boltzmann constant and K(s, s′) is the kernel
representing the radiative heat exchange between s and s′ [16].
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In particular we focus on the control of the temperature on some parts of the boundary Γ2 ⊂ Γ. If T0 is the
desired distribution of temperature on Γ2 we minimise the functional

J =
∫

Γ2

(T − T0)2dΓ (1.2)

under various constraints. This leads to a consistent mathematical optimal control problem and a corresponding
first order necessity condition in form of variational inequality.

The plan of the rest of the paper is as follows. In Section 2 we formulate the heat radiation exchange model
in a convenient and precise mathematical way. In Section 3, a simple model for radiating sources is discussed
and the optimal source control problem is stated; then, we will prove the existence of optimal control solutions
and characterize them by deriving the first order necessity conditions associated with the problem. Finally,
in Section 4, an optimal shape problem is formulated where the control is assumed to be the top part of the
domain; then the existence of controls are proved and the corresponding first order necessity conditions are
derived.

2. Model and notations

2.1. Model

In this section we discuss briefly the exchange radiation model assumed in this paper. In particular we focus
on the problem of pure radiation with diffuse grey surfaces which implies uniform emission and reflection in
every direction and the same spectral emissivity ε and absorptivity a for all wave lengths. The reflectivity is
denoted by ρ and under the above assumptions we have ε = a = 1− ρ.

We consider a bounded domain Ω with boundary ∂Ω. Let S be the surrounding of Ω, with boundary ∂S.
The intersection between ∂S and ∂Ω defines the radiating boundary Γ.

On Γ the heat balance is stated as

Φ− u+ µ = 0, (2.1)

where Φ is the surface heat flux, u is the radiosity (radiative energy leaving the surface) and µ is the irradiation
(incoming radiative energy).

For grey and diffuse surfaces the total radiosity is the sum of the black body emission (corresponding to the
Stefan-Boltzmann radiation law) and the reflected part of the irradiation, i.e.,

u = ε σ T 4 + (1− ε)µ, (2.2)

where σ denotes the Stefan-Boltzmann constant (σ = 5.670× 10−8 W/m2K4).
The irradiation on Γ depends of the radiation emitted by all visible parts and the external radiation source u∞.

We have

µ(s) =
∫

Γ

K(s, s′)u(s′) ds′ + u∞(s) ∀s ∈ Γ, (2.3)

where K(s, s′) is the view factor between s and s′ (see for example [16]). By combining (2.2) and (2.3) we
obtain the equation for the radiosity u in the following form

u = ε σ T 4 + (1− ε)
(∫

Γ

K(s, s′)u(s′) ds′ + u∞

)
(2.4)
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and for the heat flux Φ as

Φ = u−
∫

Γ

K(s, s′)u(s′) ds′ − u∞. (2.5)

The stationary heat equation for the conductive body S can be written as

−k∇2T = 0 in S,

where k denotes the heat conductivity. On some parts of the boundary of ∂S we assume Neumann boundary
conditions, namely a perfect insulating boundary, and elsewhere radiating boundary conditions. For simplicity
we assume S to be isolated on ∂S/Γ. Then the complete combined conduction radiation boundary value problem
is stated as 

−k∇2T = 0 in S

k
∂T

∂n
= 0 on ∂S/Γ,

k
∂T

∂n
= Φ on Γ

(2.6)

where Φ is given by (2.5). If we neglect the conduction in S and just consider the radiative heat transport on Γ
(Φ = 0) then we have that the radiosity u is equal to σT 4 and satisfies a Fredholm integral equation of second
kind with weakly singular kernel K and known right hand side f , namely (2.5) becomes

u(s)−
∫

Γ

K(s, s′)u(s′) ds′ = f(s) ∀s ∈ Γ. (2.7)

In the rest of the paper we neglect the conduction on S and identify the domain surrounding Ω with the
boundary Γ.

2.2. Notations

Let O be an open bounded set which is either the domain Ω, or its boundary Γ, or part of its boundary. We
denote the space of measurable functions φ of order p ≥ 1 by Lp(O) and the standard Sobolev space of order
s ∈ R by Hs(O). Whenever m is a nonnegative integer, the inner product over Hm(O) is denoted by (f, g)m
and (f, g) indicates the inner product over H0(O) = L2(O). Hence we associates to Hm(O) its natural norm
‖f‖m,O =

√
(f, g)m. Whenever it is possible, we will neglect the domain label.

For vector-valued functions and spaces we use boldface notation. For example, Hs(O) = [Hs(O)]n denotes
the space of Rn-valued functions such that each component belongs to Hs(O). Of special interest is the space

H1(O) =
{
v ∈ L2(O)

∣∣ ∂v
∂x
∈ L2(O)

}
equipped with the norm ‖v‖1 = (

∫
O(|v|2 + |vx|2)dx)1/2. For ∂Os ⊂ ∂O with nonzero measure, we also consider

the subspace

H1
∂Os(O) = {v ∈ H1(O)

∣∣ v = 0 on ∂Os} ·

Also we denote by H1
0 (O) the set H1

∂O(O) and by 〈·, ·〉 the duality pairing between H1
0 (O) and H−1(O).

A weak formulation of the pure radiation problem can be stated as follows.
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Let Ω be an open bounded set with boundary ∂Ω and Γ be a non-empty subset of the boundary. Given
f ∈ L2(Γ), find u ∈ L2(Γ) satisfying∫

Γ

u(s)φ(s) ds−
∫

Γ

φ(s)
∫

Γ

K(s, s′)u(s′) ds′ds =
∫

Γ

f(s)φ(s) ds ∀φ ∈ L2(Γ), (2.8)

where

K(s, s′) =

(
~n(s′) · (~r − ~r ′ )

)(
~n(s) · (~r ′ − ~r)

)
2‖~r ′ − ~r ‖3 Ξ(s, s′). (2.9)

The vectors ~r and ~r ′ indicate the position of s and s′ and ~n denotes the normal to the boundary Γ. The function
Ξ(s, s′) is defined by

Ξ(s, s′) =
{

0 if ss′ ∩ Γ 6= 0
1 if ss′ ∩ Γ = 0,

(2.10)

where ss′ denotes the segment

ss′ =
{
~x ∈ R2 | ~x = ~r(s) t+ (1− t)~r(s′), t ∈ (0, 1), s, s′ ∈ Γ

}
·

In the case of a convex set Ω we have Ξ(s, s′) = 1 for all s, s′ ∈ Γ. The equivalence of the weak formulation
in (2.8) with the classical problem in (1.1) is clear since the kernel K(·, ·) has finite norm ‖K‖ in L2(Γ)×L2(Γ).

The equation in (2.8) can be written in operator form. The operator K̂ : L2(Γ)→ L2(Γ) is defined by

〈K̂u, φ〉 =
∫

Γ

φ(s)
∫

Γ

K(s, s′)u(s′) ds′ds ∀φ ∈ L2(Γ),

and (2.8) becomes

u− K̂(u) = f (2.11)

with u ∈ L2(Γ) if f ∈ L2(Γ).
Existence and uniqueness of solutions of the above problems has been studied in [22] under the assumption

that the source term is known on the boundary Γ. If Γ is piecewise C1,1 and f ∈ L2(Γ) the problem in (2.8)
is well posed and has unique solution in L2(Γ). Also some useful properties of the operator K̂ can be found
in [22] and briefly summarised as follows:

i) K̂ defined on a closed curve is well defined and its norm ‖K̂‖ is equal to 1;
ii) the operator K̂ is nonnegative;
iii) K̂ maps Lp(Γ) into itself compactly and ‖K̂‖ ≤ 1.

In order to solve the boundary equation (2.8) we need to specify the curve Γ and rewrite (2.8) in the cartesian
coordinate system. Let Ω be an open simply connected set in R2 with boundary ∂Ω and η be the curvilinear
coordinate on ∂Ω which is piecewise C1,1. We consider a smooth one-to-one mapping ~r(η) = (x, z) from [0, 1]
into Γ ⊂ R2. The tangent direction is defined by

ē1 =
∂~r

∂η

and the corresponding covariant matrix by the element

g(η) = ē1 · ē1 =
(
∂x

∂η

)2

+
(
∂z

∂η

)2

· (2.12)
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The unit normal vector ~n(η) at η is given by ~n = ē2/|g| where

ē2 =
(
−∂z
∂η
,
∂x

∂η

)T
· (2.13)

We can define the unit tangent vector as ~s = ē1/|g| and the covariant basis in R2 for the curve Γ as the pair
(~s, ~n). Therefore we have two fundamental coordinate systems: the global system, defined by (x, z), and the
local system or covariant system defined by (s, n).

In this representation the integral of the function y(s) over Γ reads∫
Γ

y(s) ds =
∫
I

y(s(η))
√
g(η) dη. (2.14)

By introducing the kernel of the integral equation in the form

K(s, s′) =

(
~n(s′) · (~r − ~r ′ )

)(
~n(s) · (~r ′ − ~r)

)
2‖~r ′ − ~r ‖3 Ξ(x, x′) (2.15)

then (2.8) becomes∫
I

u(η)φ(η)
√
g(η)dη −

∫
I

φ(η)
∫
I

K(η, η′)u(η′)dη′dη =
∫
I

φ(η)f(η)
√
g(η)dη, (2.16)

where

K(η, η′) =
(ē2 · (~r ′ − ~r))(ē2

′ · (~r − ~r ′))
2 ‖~r− ~r ′ ‖3 Ξ(η, η′). (2.17)

Numerical solutions of the boundary equation (2.16) can be found by using a wide range of schemes (see for
example [16, 23] and references therein). Also an abstract “a priori” error estimate for the finite dimensional
approximations of (2.8) and (2.6) can be found in [23].

3. Optimal control problem for intensity and location of sources

3.1. Model

Let Ω be an open bounded domain with boundary ∂Γ = Σ1 ∪ Γ1 ∪ Σ2 ∪ Γ2. We consider a geometric
configuration with isotropic non-conductive grey surfaces and radiating sources Si, i = 1, 2 . . . , n. The radiating
boundary Γ is supposed to be an isotropic non-conductive grey surface and consists of the top surface Γ1 and
the bottom surface Γ2. The rest of the boundary, which is a non-radiating surface, is denoted by Σ = Σ1 ∪ Σ2

(see Fig. 1).
Under these assumptions, we can model the heat transfer by the function u = σT 4, where u is the solution of∫

Γ

uφds−
∫

Γ

φ(s)
∫

Γ

K(s, s′)u(s′) ds′ds =
∫

Γ

f(s, ~q)φds ∀φ ∈ L2(Γ) (3.1)

and f(s, ~q) ∈ L2(Γ) is the source term which is Lipschitz continuous with respect to the control ~q = ~q(Tb).
There are several analytical and empirical models available from the manufacturing industry but here we

consider a simple model. Let ΓSb be a convex surface emitting radiation at the temperature Tb. In this case we
can write the source term in (3.1) as integral over the known radiating surface ΓSb , i.e.

f(s, ·) =
∫

ΓSb

K(s, s′)ub(s′) ds′,
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Figure 1. Setup for the optimal control problem of the sources. Si denotes the radiating
sources and Γi the radiating surfaces.

where ub is the solution of the equation∫
ΓSb

ub(s′)φ(s′) ds′ =
∫

ΓSb

φ(s′)
∫

Γ

K(s, s′)u(s) ds ds′ +
∫

ΓSb

Q(s′)φ(s′) ds′ ∀φ ∈ L2(Γ) (3.2)

and Q(·) = Q(Tb, ·) is the known function modelling the surface intensity of the emitting source at temperature
Tb. By solving the system in (3.1) and (3.2) we have the exact solution of the problem. However the source
temperature is much higher than the surface temperature so that the first integral on the right hand side can
be neglected, namely ub satisfies∫

ΓSb

ub(s′)φ(s′) ds′ =
∫

ΓSb

Q(s′)φ(s′) ds′ ∀φ ∈ L2(Γ).

We set φ(s′) = K(s′, s) in the above equation then we have

f(s, ·) =
∫

ΓSb

Q(s′)K(s′, s) ds′

for all s ∈ Γ. The integral can be computed if we consider a two-dimensional cylindrical point source with small
radius r0 when the radius tends asymptotically to zero. In fact in this case the source, located at the point ~xb,
takes the form [16]

f(s, ·) =
Qb
π
W (s, ~xb) =

Qb
2π

~n(s) · (~xb − ~r(s))
|~r(s)− ~xb|2

, (3.3)

where Qb = 2πr0σT 4
b is the total energy emitted by the source, the vector ~r(s) indicates the position s on the

boundary and ~n is the normal to Γ at ~r(s). Also we note that, if |~r(s)− ~xb| ≥ r0, then

sup
s∈Γ
|f | ≤ Qb

2πr0
, (3.4)

which states the conservation of energy on Γ.
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In the rest of the paper we refer to (3.3) as our source model which is characterised by few parameters: the
source centre of mass ~xb and the total source intensity Qb which is a function of its average temperature Tb and
radius r0. If the temperature of the boundary is close to the source temperature this model is no longer valid.
For example in a steady situation where a source is located in a closed domain and no radiation can escape the
temperature of the boundary is the same as the temperature of the source and the correct source model defined
by (3.2) must be used.

For n two-dimensional point sources emitting energy Qbi we write

f(s, ~q) =
n∑
i=1

Qbi
π
W (s, ~xbi), (3.5)

where ~xbi = (xbi, zbi) is the position of the i-th point source and W (·, ·) defined by (3.3). If we desire to control
the intensity we write ~q = (q1, q2, . . . , qn), Qbi = qi for i = 1, 2, . . . , n and

f(s, ~q) =
n∑
i=1

qi
π
W (s, ~xbi). (3.6)

If we desire to control the vertical position of the sources we write zbi = qi for i = 1, 2, . . . , n or

f(s, ~q) =
n∑
i=1

Qbi
π
W (s, (xbi, qi)). (3.7)

In this paper the control ~q is a vector which lies in a n-dimensional space Rn but a generalisation to infinite
dimensional spaces is straightforward. In particular we consider n-dimensional controls bounded by the following
constraints

χ ≤ qi ≤ ω ∀i = 1, . . . , n, (3.8)

where χ and ω are the given limits for the control. We note that in (3.7) a constraint is necessary to keep the
vertical coordinate far from the boundary Γ, namely the function f in L2(Γ). Given χ < ω, we define by Lχω
the set of all vectors in Rn bounded by (3.8). It is easy to see that Lχω is a closed convex set.

We can think the source term f as an operator from Rn to L2(Γ) and the function f(~q) is always assumed
known and Lipschitz continuous with respect to ~q inside the range of interest. The source term defined in (3.6)
is clearly Lipschitz continuous but the source term in (3.7) is Lipschitz continuous only if specified over an
appropriate range. From (3.7) we have

∂f

∂~q
=

n∑
i=1

Qbi
π

∂W

∂qi
(s, (~xbi, qi)) =

n∑
i=1

Ibi
2π

[
−nz

|~ri − ~xbi|2
+ 2

(~n · (~ri − ~xbi))(z − qi)
|~ri − ~xbi|4

]
,

where ~n is the normal to Γ and nz its z-component. If χ > 0 and ω < min{z : (x, z) ∈ Γ ⊂ R2} then clearly
df/d~q is bounded and f is Lipschitz continuous with respect to ~q.

The objective of the optimisation is to have a desired temperature profile on the bottom surface Γ2, which is
equivalent to having a desired profile of the function u since σT 4 = u on Γ2. This optimisation can be reached
through the minimisation of the following functional

J (u, q) =
∫

Γ2

(u− U)2d~s, (3.9)

where U is the desired distribution of radiosity. We say that U is in the set of admissible targets Uad if
U ∈ L2(Γ2). The function U is equal to σT 4

0 if T0 is the desired profile of temperature on Γ2.
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The optimal control problem can be stated as follows:

Find (u, ~q) ∈ (L2(Γ),Lχω) such that (u, ~q) satisfies (3.1) and minimises (3.9) under the constraint (3.8).

By using standard techniques, it is possible to show that this problem has at least one solution.

Theorem 3.1. If Γ ∈ C1,1 and f is Lipschitz continuous with respect to the control ~q then the optimal control
problem has at least one solution (u, ~q) ∈ L2(Γ)× Rn.

Proof. We briefly sketch the proof (for details see [11, 12]). Since the set of admissible solutions is not empty
there exist minimising sequences un and ~qn. Since these minimising sequences are uniformly bounded then there
exist a pair (u, ~q) and subsequences uk, qk converging weakly to (u, ~q). This limit is solution of the problem. In
fact the lower semicontinuity of the functional and the Lipschitz continuous condition of the source term allows
us to pass to the limit in the functional and in the equation. �

3.2. The first order necessity condition

We shall show that the optimal control solution must satisfy a first-order necessity condition, which leads
to a variational inequality. By studying this variational inequality, a possible candidate for the optimal control
solution can be found. Now we need to prove differentiability.

Theorem 3.2. Let ~q and q̃ be in Lχω. The mapping u = u(~q) from Lχω to L2(Γ), defined as the solution
of (3.1), has a Gateaux derivative du/d~q · ~h in the direction ~h = q̃ − ~q. Furthermore, w̃(h) = (du/d~q) · ~h is the
solution of the problem∫

Γ

w̃(s)φ(s)ds −
∫

Γ

φ(s)
∫

Γ

K(s, s′)w̃(s′) ds′ ds =
∫

Γ

φ(s)
(
df

d~q
· ~h
)
ds ∀φ ∈ L2(Γ), (3.10)

Proof. This follows from the linearity of the operator K̂. For details see for example [24]. �

From the definition of optimal solution (u, ~q), we have

J (u, ~q)−J (u, q) ≤ 0 ∀q ∈ Lχω .

As Lχω is convex, then we can set q = q̃t+ (1− t)~q for all t ∈ [0, 1] and for all q̃ ∈ Lχω . Hence

J (u, ~q − t(~q − q̃))−J (u, ~q) ≥ 0 ∀t ∈ [0, 1],

which implies the following lemma for t tending to zero.

Lemma 3.3. If (u, ~q) ∈ L2(Γ)× Lχω is an optimal solution then the variational inequality

J ′(u, ~q) · (q̃ − ~q) ≥ 0 ∀q̃ ∈ Lχω (3.11)

must hold.

Fortunately, in order to minimise the functional we need only an integral over all the directions and this can
more easily be obtained through the solution of a single adjoint equation. To see this, the following result is
needed.

Lemma 3.4. Let 0 < χ < ω, U ∈ Uad, ~h ∈ Lχω and w̃(~h) be defined through (3.10). For every h2 ∈ L2(Γ)
we have ∫

Γ

h2 w̃(h) ds = −
∫

Γ

λ(s)
(
df

d~q
· ~h
)
ds, (3.12)
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where λ is the solution of the adjoint problem∫
Γ

λ(s)φ(s)ds −
∫

Γ

φ(s)
∫

Γ

K(s, s′)λ(s′) ds′ ds = −
∫

Γ

h2(s)φ(s) ds ∀φ ∈ L2(Γ). (3.13)

Proof. This lemma follows from the fact that the operator K̂ is self-adjoint. In fact∫
Γ

h2 w̃(h) ds = −
∫

Γ

λ(s) w̃(s) ds+
∫

Γ

w̃(s)
∫

Γ

K(s, s′)λ(s′) ds′ ds = −
∫

Γ

λ(s)
(
df

d~q
· ~h
)
ds.

�
It is now easy to show that a solution of the optimal problem implies a variational inequality involving the
adjoint variable.

Theorem 3.5. Let 0 < χ < ω and U ∈ Uad. If (u, ~q) ∈ L2(Γ)× Lχω is an optimal pair, then we have

J ′(u, ~q) · (q̃ − ~q) =
∫

Γ2

λ(s)
(
df

d~q
· (q̃ − ~q)

)
ds ≥ 0 ∀q̃ ∈ Lχω , (3.14)

where λ is the solution of the adjoint problem∫
Γ

λ(s)φ(s) ds −
∫

Γ

φ(s)
∫

Γ

K(s′, s)λ(s′)ds′ds = −
∫

Γ

(u(s)− U(s))φ(s) ds ∀φ ∈ L2(Γ) (3.15)

and u the solution of (3.1).

Proof. From Theorem 3.2 and Lemma 3.4 we have

J ′(u, ~q) · ~h =
∫

Γ2

w̃(s) (u(s)− U(s)) ds =
∫

Γ2

λ(s)
(
df

d~q
· ~h
)
ds.

The theorem follows from Lemma 3.3. �

3.3. The optimality system

The adjoint method used here requires the solution of the pure radiative equation∫
Γ

u(s)φ(s) ds −
∫

Γ

φ(s)
∫

Γ

K(s, s′)u(s′) ds′ds =
∫

Γ

f(s, ~q)φ(s) ds ∀φ ∈ L2(Γ), (3.16)

the adjoint equation∫
Γ

λ(s)φ(s) ds −
∫

Γ

φ(s)
∫

Γ

K(s, s′)λ(s′) ds′ ds = −
∫

Γ

(u(s)− U(s))φ(s) ds ∀φ ∈ L2(Γ) (3.17)

and the variational inequality

J ′(u, ~q) · (q̃ − ~q) =
∫

Γ2

λ(s)
(
df

d~q
· (q̃ − ~q)

)
ds ≥ 0 ∀q̃ ∈ Lχω , (3.18)

where f is defined by (3.5). The numerical solution of the optimality system must be found iteratively. In
order to solve the above system we propose a projected gradient algorithm [14]. Set J (k) = J (u, q(k)), where
J (·) is given by (3.9) and k is the iteration counter of the gradient algorithm. In the algorithm, τ will denote
a prescribed tolerance used to test for the convergence of the functional. The gradient algorithm proceeds as
follows.
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Figure 2. Setup of the optimal shape design problem. The dot line marks the limits on the
variation of the surface Γα.

a) initialisation:
i) choose τ and ~q(0); set k = 0 and ρ0 = 1;
ii) solve for the starting field u(0) from (3.16) with ~q = ~q(0);
iii) evaluate J (0);

b) main loop:
iv) set k = k + 1;
v) solve for λ(k) from (3.17) with u = u(k − 1);
vi) set ~q(k) = PL

(
~q(k − 1)− ρk

∫
Γ2
λ(k − 1) dfd~q (k − 1) ds

)
;

vii) solve for u(k) from (3.16) with ~q = ~q(k);
viii) evaluate J (k);
ix) if J (k) ≥ J (k − 1), set ρk−1 = .5ρk−1 and go to vi); otherwise, continue;
x) if |J (k)−J (k − 1)|/|J (k)| > τ , set ρk = 1.3ρk−1 and go to iv); otherwise, stop.

The operator PL is the projection operator over the set Lχω . A discussion of this algorithm can be found in [7]
or [1]. Other, more sophisticated, strategies and implementation can be devised to speed up convergence. For
example the trust region algorithm can be used [9].

4. Optimal shape design problem

4.1. Preliminaries and description of the problem

In this section we shall study the shape optimisation of the pure radiation problem which leads to a predefined
bottom temperature distribution. The shape of the domain Ω can be defined by four surfaces (see Fig. 2): the
top surface Γ1, the bottom surface Γ2, which are the radiating boundaries and two non-radiating surfaces Σ1

and Σ2. We assume, without loss of generality, that the bottom is flat and fixed, namely Γ2 = {(x, z) ∈ R2 :
z = 0, x ∈ (0, L)}. We take the top surface Γα = {(x, z) ∈ R2 |x ∈ (0, L), z = α(x)} = Γ1 as control, which is
assumed to be bounded and regular. In the rest of the paper we denote (0, L) simply by I and the radiating
surface by Γ(α) = Γα ∪ Γ2.

We can define a set of possible shapes in the following way. Let χ and ω be two positive constants and z0,
z1 be the boundary points of the controlled surface Γα. The set of all convex α ∈ H2(I) with χ ≤ α ≤ ω and
α(0) = z0, α(L) = z1 and d2α/dx2(0) = d2α/dx2(L) = 0 may be a suitable set of admissible controls α. In fact
from the Sobolev imbedding theorem we have that the boundary Γα is in H2(I) ⊂ C1(Ī) ⊂ C0,1(Ī), which is
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regular enough to suppress excessive oscillations of the boundary (see for example [18]). However the regularity
of α ∈ H2(I) may not be enough to write explicitly the first order necessity condition. From the nature of the
integral equation we must assume d2α/dx2 positive and bounded by M so that α is in C1,1(I). We note that
the kernel K(s, s′) in (4.4) is defined through the function Ξ (see (2.10)), which may introduce many relative
minimal points. Also the function Ξ may not be differentiable and therefore the first order necessity condition
may not be achievable in explicit form. In order to avoid these unfortunate situations we assume convexity
for α. The convexity of Γα and the shape of Ω guarantee that the factor Ξ is always equal to 1. Furthermore
the convexity of α implies that α ≥ χ if χ = min{z0, z1} and the continuity ensures that there exists a real
number ω such that α ≤ ω.

Hence the set of admissible controls α is defined by the following convex closed set

Qad(I) =
{
α ∈ H2(I) such that −M ≤ d2α

dx2
≤ 0
}
,

with M real positive constant. The objective of the optimisation is to have a desired profile of temperature on
the bottom surface Γ2, which is equivalent to having a desired profile of the function u since σT 4 = u. This
optimisation can be reached through the minimisation of the following functional

J (u, α) =
1
2

∫
Γ2

(u− U)2ds+ γ
1
2

∫
I

(
d2α

dx2

)2

dx, (4.1)

where U ∈ Uad is the desired distribution of radiosity and γ is a positive real constant. The penalty term
γ(d2α/dx2)2, with γ > 0, is necessary to have α in H2(I). However this does not imply α ∈ C1,1 and therefore
we need to include the constraint α ∈ Qad(I) in order to have a well posed problem.

We introduce the set of admissible controls α and solutions u as

Aad = {(u, α) ∈ L2(Γ(α)) ×Qad such that J (u, α) <∞,where (u, α) is a solution of (2.8)} · (4.2)

The optimal shape design problem can be stated as follows:

Find α ∈ Qad such that

J (u, α) ≤ J (u, α̃) ∀α̃ ∈ Qad(I), (4.3)

with u ∈ L2(Γ(α)) solution of∫
Γ(α)

u(s)φ(s) ds−
∫

Γ(α)

φ(s)
∫

Γ(α)

K(s, s′)u(s′)ds′ds =
∫

Γ(α)

f(s)φ(s)ds ∀φ ∈ L2(Γ(α)) (4.4)

and f ∈ L2(Γ(α)).
In the rest of the paper we shall assume the source term of the form (3.3) which can be easily extended to

n-point sources. Now we shall show the existence of at least one solution of the optimal shape design problem
formulated in (4.3–4.4).

Theorem 4.1. Let U ∈ U ad be given, then there exists at least one solution (u, α) ∈ Aad(I) of the optimal
control problem.

Proof. In order to prove this theorem we have to show that there exists a convergent minimising sequence and
the corresponding limit satisfies the optimal shape control problem.

The admissible set of solutions Aad is bounded and not empty which implies the existence of a minimising
sequence {αm} ∈ Qad(I) and a corresponding sequence {um}. In fact the boundness of Aad is obvious from the
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definition of the admissible set and the non-emptiness follows from the fact that the linear shape α between the
points (0, z0) and (L, z1) is in the set Qad and the corresponding solution u(α) in L2(Γ(α)).

Now we have to show that these sequences are uniformly bounded. The minimising sequence {αm} ∈ Qad(I)
is clearly uniformly bounded in H2(I) when γ > 0. From (4.4) the norm of ~u can be estimated as

‖~u‖Γ(α) ≤ C1‖~f‖Γ(α) ≤ C2Qtot

for some constant C1 and C2 and any α ∈ Qad where Qtot is the total source intensity. Let J be an open
bounded set in R and the extension of u be the function which is equal to u on J and zero otherwise [2,13]. In
the rest of the proof we use the same notation for the function and its extension. If the sequence {αn} is in
C1,1 then the corresponding sequence of extended functions {un} is uniformly bounded in L2(R).

As Hilbert spaces are reflexive, every ball is weakly compact and thus there exist a pair (u, α) and a subse-
quence (uk, αk) such that

uk −→ u weakly in L2(R)
αk −→ α weakly in H2(I).

Since Qad is a convex closed set then Qad is also a weakly closed set and the limits α and u are in Qad and
L2(Γ(α)), respectively (see [20]).

Now we have to show that the pair (u, α) solves (4.4) and minimises the functional J (u, α). In order to show
that (u, α) satisfies (4.4) we have to pass (uk, αk) to the limit in the equation. Let Γ(α) and u be the weak
limits of the sequence Γ(αk) and uk respectively. We need to prove that

lim
k→∞

(∫
Γ(αk)

ϕ(sk)
(
uk(sk) −

∫
Γ(αk)

K(sk, s′k)uk(s′k) ds′k − f(sk)
)
dsk

−
∫

Γ(α)

ϕ(s)
(
u(s) −

∫
Γ(α)

K(s, s′)u(s′) ds′ − f(s)
)
ds

)
= 0.

We shall show that the limit is true for all ϕ ∈ C∞0 (R) and then we claim the theorem by a continuity argument
as the set C∞0 (R) is dense in L2(R) [20].

For the first term we have to prove that

lim
k→∞

(∫
Γ(αk)

ϕ(sk)uk(sk)dsk −
∫

Γ(α)

ϕ(s)u(s) ds

)
= 0.

Since the limit is clearly zero on the fix boundary Γ(α)− Γαk we can restrict the domain to Γαk . By using the
covariant coordinates of Γ(α) to describe Γ(αk) we have(∫

Γαk

ϕ(sk)uk(sk) dsk −
∫

Γα

ϕ(s)u(s) ds

)
=

(∫
Γαk

ϕ(sk)uk(sk) dsk −
∫

Γα

ϕ(s)uk(s) ds

)

+
∫

Γα

ϕ(s) (uk(s)− u(s)) ds.

Since αk−α converges in C1 the first term of the right hand side converges to zero. From the weakly convergence
of the extended uk in L2(R) the second term on the right hand side converges to zero when αk → α. The theorem
follows by treating all the other terms in a similar way.
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Now it remains to show that (u, α) minimises the functional J (u, α). In fact, by the convexity of Qad we
have lower semi-continuity of the functional in (4.1) [20] and hence

J (u, α) ≤ lim inf
n→∞

J (un, αn).

�

4.2. Optimal shape design

In this subsection we shall find the first order necessity conditions for the optimal shape design in the case
of pure radiation. Let Ω be an open bounded set in R2 with boundary Γ. As the function α defines the
shape of Γ we write Γ(α). After deformation, the domain Ω(α) takes a new shape Ω(α̃) with boundary Γ(α̃)
corresponding to the function α̃. The field, defined on Γ(α), transforming Γ(α) into Γ(α̃) is indicated with
~V and the corresponding variation with δα = α̃ − α. In our specific case the vector ~V may be taken equal
to (0, δα) in Γα and zero in the remaining part of the boundary. In this way we generate a family of boundaries
parameterised by t as

Γα+tδα = {~xα + t ~V (xα) | ~xα ∈ Γα}

for all t ∈ [0, 1] and the corresponding family Γ(αt) = Γ(α + tδα). Let X and Y be two Banach spaces then
u(α) : B ⊂ X → Y is said to have Gateaux derivative at α ∈ B if there exists a function w̃ ∈ Y such that [18]

lim
t→0+

‖uαt(Γ(αt))− uα(Γ(α))− tw̃(Γ(α))‖Y (Γ(α))

t
= 0. (4.5)

Before proving Gateaux differentiability we need to prove the following fundamental introductory lemma. This
lemma has been proved for our particular optimal control situation but a more general framework can be found
in [21].

Lemma 4.2. Let α, α̃ ∈ Qad(I), δα = α̃− α, αt = α+ tδα and y(s) be in L2(R). Then we have

lim
t→0+

1
t

(∫
Γ(αt)

y(st) dst −
∫

Γ(α)

y(s) ds− t
∫

Γα

y(s)κ(s) (~V · ~n(s)) ds

)
= 0, (4.6)

where ~V is the vector (0, δα), κ is the curvature and ~n is the unitary vector normal to Γα.

Proof. The result is obvious on the fix part of the boundary so that we can limit our considerations to the
controlled boundary Γα = {~xα = (x, z) ∈ R2 | z = α(x)}. Since the set C∞0 (R) is dense in L2(R) we can prove
the proposition for all y ∈ C∞0 (R) and claim the theorem by a continuity argument.

In order to compute the integral in (4.6) we use a parameterisation over the fix domain I. As discussed
in previous sections we have the global coordinate system (x, z) and the local or covariant coordinate system
(s, n) on Γα. From the global coordinate system we can evaluate the components in the tangent and the normal
directions by ∣∣∣∣ sn

∣∣∣∣ =
1√

1 + α′2

∣∣∣∣ 1 α′

α′ −1

∣∣∣∣ ∣∣∣∣ xz
∣∣∣∣ .
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For a variation δα we can write the family Γα+tδα as {(xt, zt) ∈ R2|xt = x, zt = α(x) + tδα(x)}. In order to
prove (4.6) we have to show the following limit

lim
t→0

1
t

(∫
Γαt

y(st) dst −
∫

Γα

y(s) ds

)
= lim
t→0

1
t

(∫
Γαt

y(st) dst −
∫

Γα

y(st(s)) ds

)
+ lim
t→0

1
t

∫
Γα

(y(st(s))− y(s)) ds

=
∫

Γα

y(s)κ(s) (~V · ~n) ds.

The determinant of the covariant matrix for the transformation from Γα to Γαt takes the form 1 + (α′ + tδα′)2

and therefore the first term can be computed as

lim
t→0+

1
t

(∫
Γαt

y(st) dst −
∫

Γα

y(st(s)) ds

)
=
∫
I

y(s)
α′√

1 + α′2
δα′ dx. (4.7)

If we note that s = (x+ α′z)/
√

1 + α′2) so that ds/dz = α′/
√

1 + α′2) the second term can be written as

lim
t→0+

1
t

(∫
Γα

y(st(s)) − y(s)ds
)

=
∫
I

∂y(s)
∂s

α′√
1 + α′2

δαdx =
∫
I

−
(
y(s)

α′′

(1 + α′2)3/2
δα+ y(s)

α′√
1 + α′2

δα′
)
dx

= −
∫
I

y(s)
α′√

1 + α′2
δα′dx+

∫
Γα

y(s)κ(s)(~V · ~n)ds. (4.8)

The theorem follows by adding (4.8) and (4.7). �

We shall show that the optimal control solution must satisfy a first-order necessity condition, which leads
to a variational inequality. By studying this variational inequality, a possible candidate for the optimal control
solution can be found. In order to find this necessity condition we need to prove differentiability.

Theorem 4.3. Let α and α̃ be in Qad(I). The mapping

u(α) : Qad(I)→ L2(Γ(α))

defined as solution of (4.4), has a Gateaux derivative w̃ = (Du/Dα) · δα at α in the direction δα = α̃ − α.
Furthermore, w̃ = (Du/Dα) · δα is the solution of the problem∫

Γ(α)

w̃(s)φ(s) ds −
∫

Γ(α)

φ(s)
∫

Γ(α)

K(s, s′) w̃(s′) ds′ds

=−
∫

Γ(α)

φ(s)
∫

Γα

κ(s′) (~V (δα′) · ~n(s′))K(s, s′)u(s′) ds′ ds ∀φ ∈ L2(Γ), (4.9)

where ~V (δα) is the vector (0, δα), κ is the curvature and ~n the normal to Γα.

Proof. In this proof we use the same notation for a function and its canonical extension to R as already discussed
in the previous section. Let α and α̃ be in H2(I) and αt = α+ t δα. We need to prove the following result

lim
t→0+

(‖ut − u− tw̃‖L2(Γ(α))

t

)
= 0. (4.10)
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The test functions can be defined on R and considered constant during the deformation of the domain. The
function u is the solution of∫

Γ(α)

u(s)φ(s) ds −
∫

Γ(α)

φ(s)
∫

Γ(α)

K(s, s′)u(s′) ds′ ds−
∫

Γ(α)

f(s)φ(s) ds = 0

and ut(st) is solution of∫
Γ(αt)

ut(st)φ(st) dst −
∫

Γ(αt)

φ(st)
∫

Γ(αt)

K(st, s′t)ut(s
′
t) ds

′
tdst −

∫
Γ(αt)

f(st)φ(st) dst = 0.

We set ũ = (ut − u− tw̃)/t so that ũ is the solution of the equation∫
Γ(α)

ũ(s)φ(s) ds −
∫

Γ(α)

φ(s)
∫

Γ(α)

K(s, s′) ũ(s′) ds′ds ∀φ ∈ L2(Γ)

=
1
t

(∫
Γ(αt)

φ(st)

(
ut(st)−

∫
Γ(αt)

K(st, s′t)ut(s
′
t) ds

′
t − f(st)

)
dst

−
∫

Γ(α)

φ(s)

(
ut(s) −

∫
Γ(αt)

K(s, s′t)ut(s
′
t) ds

′
t − f(s)

)
ds

−
∫

Γ(α)

φ(s)

(∫
Γ(αt)

K(s, s′t)ut(s
′
t) ds

′
t −
∫

Γ(α)

K(s, s′)ut(s′) ds′
)
ds

)

+
∫

Γ(α)

φ(s)
∫

Γα

κ(s′) (~V (δα′) · ~n(s′))K(s, s′)u(s′) ds′ds.

In order to evaluate the right hand side we use the Lemma 4.2 and the estimate of the norm ‖ut − u‖ which is
obtained by using similar techniques. Since the function

φ(s)

(
ut(s)−

∫
Γ(αt)

K(s, s′t)ut(s
′
t)ds

′
t − f(s)

)

is in L2(Γ(α)) then for every ε/2 > 0 there exists a δ1 > 0 such that if |t| < δ1 we have∣∣∣∣∣1t
(∫

Γ(αt)

φ(st)

(
ut(st)−

∫
Γ(αt)

K(st, s′t)ut(s
′
t) ds

′
t − f(st)

)
dst

−
∫

Γ(α)

φ(s)

(
ut(s) −

∫
Γ(αt)

K(s, s′t)ut(s
′
t) ds

′
t − f(s)

)
ds

)

−
∫

Γ(α)

φ(s)κ(s)(~V · ~n(s))

(
ut(s) −

∫
Γ(αt)

K(s, s′t)ut(s
′
t) ds

′
t − f(s)

)
ds

∣∣∣∣∣ ≤ ε

2

which implies∣∣∣∣∣1t
∫

Γ(αt)

φ(st)

(
ut(st)−

∫
Γ(αt)

K(st, s′t)ut(s
′
t) ds

′
t − f(st)

)
dst

−1
t

∫
Γ(α)

φ(s)

(
ut(s) −

∫
Γ(αt)

K(s, s′t)ut(s
′
t) ds

′
t − f(s)

)
ds

∣∣∣∣∣ ≤ ε

2
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since

lim
t→0

∫
Γ(α)

φ(s)κ(s)(~V · ~n(s))

(
ut(s) −

∫
Γ(αt)

K(s, s′t)ut(s
′
t) ds

′
t − f(s)

)
ds = 0.

In a similar way for every ε/2 > 0 there exists a δ2 > 0 such that, if |t| < δ2, we have∣∣∣∣∣
∫

Γ(α)

φ(s)

(∫
Γ(αt)

K(s, s′t)ut(s
′
t) ds

′
t −
∫

Γ(α)

K(s, s′)ut(s′) ds′
)
ds

−
∫

Γα

φ(s)
∫

Γα

κ(s′) (~V ′ · ~n(s′))K(s, s′)u(s′) ds′ds
∣∣∣∣ ≤ ε

2
·

This means that for |t| < δ = min{δ1, δ2} and φ = ũ we can write

‖ũ‖2 ≤
∣∣∣∣∣
∫

Γ(α)

ũ(s)
∫

Γ(α)

K(s, s′) ũ(s′) ds′ ds

∣∣∣∣∣+ ε

and therefore (
1− ‖K‖2L2(Γ(α))×L2(Γ(α))

)
‖ũ‖2 ≤ ε.

The theorem follows as the above inequality is true for ‖K‖L2(Γ(α))×L2(Γ(α)) < 1 and all ε > 0. �

Under the hypotheses of the Theorem 4.3 we have the existence of the Gateaux derivative of the map
u = u(α). Now we can use the Gateaux derivative to compute the derivative of the functional J (u, α).

Theorem 4.4. The functional in (4.1) defines a mapping

J (u, α) : Aad(I)→ R, (4.11)

which is Gateaux differentiable in the direction δα = α− α̃ for all α̃ ∈ Qad. Furthermore we have

DJ (u, α)
Dα

· δα =
∫

Γ2

w̃ (u− U) ds+ γ

∫
I

d2α

dx2

d2δα

dx2
dx.

Proof. The proof is obvious as the functional is defined on a fix boundary Γ2 = Γ(α) − Γα. �

We have shown that the functional is Gateaux differentiable and can be written as a function of w̃. Now
we can show that the optimal control problem implies a first-order necessary condition. From the definition of
optimal solution and convexity of Qad(I) we have that

J (u, α+ λδα) ≥ J (u, α)

for every δα = α̃− α such that α̃ ∈ Qad(I), and for every λ ∈ R+. The above inequality implies

J (u, α+ λδα̃)−J (u, α)
λ

≥ 0 if λ ≥ 0.

The limit must be positive when λ tends to zero and this leads to the following first-order necessary condition.
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Theorem 4.5. If (u, α) is an optimal pair for the problem in (4.3–4.4) then the following variational inequality

J ′(u, α̃− α) ≥ 0 ∀α̃ ∈ Qad (4.12)

must hold.

We would like to write the first-order necessary condition in a more explicit form. In order to do this we
need this interesting preliminary result.

Lemma 4.6. Given α and α̃ in Qad and δα = α̃−α. Let w̃ be defined by (4.9) then, for every h̃2 in L2(Γ(α)),
we have ∫

Γ(α)

h̃2 w̃(δα) ds =
∫

Γ(α)

w(s)
∫

Γα

κ(s′) (~V (δα′) · ~n(s′))K(s, s′)u(s′) ds′ ds,

where ~V = (0, δα) on Γα and w is the solution of the following adjoint linear problem∫
Γ(α)

w(s)φ(s) ds −
∫

Γ(α)

φ(s)
∫

Γ(α)

K(s, s′)w(s′) ds′ ds = −
∫

Γ(α)

h̃2(s)φ(s) ds ∀φ ∈ L2(Γ(α)). (4.13)

Proof. By using (4.13) with φ = w̃ we have∫
Γ(α)

h̃2 w̃ ds = −
∫

Γ(α)

w w̃ ds+
∫

Γ(α)

w̃(s)
∫

Γ(α)

K(s, s′)w(s′) ds′ ds. (4.14)

The result follows easily from (4.9) with φ = w as

−
∫

Γ(α)

ww̃ds+
∫

Γ(α)

w̃(s)
∫

Γ(α)

K(s, s′)w(s′)ds′ds =
∫

Γ(α)

w

(∫
Γα

κ(s′)(~V (δα′) · ~n(s′))K(s, s′)u(s′)ds′
)
ds.

�
In the next theorem we write explicitly the first order necessity condition as a function of the adjoint variable.

Theorem 4.7. If (u, α) ∈ Aad is optimal for the problem in (4.3), then (u, α) is solution of

J ′(u, α̃− α)(w) ≥ 0 ∀α̃ ∈ Qad, (4.15)

where the function J ′(u, v)(w) is defined by

J ′(u, v)(w) = γ

∫
I

d2α

dx2

d2v

dx2
dx+

∫
Γ(α)

w

∫
Γα

κ(s′) (~V (v) · ~n(s′))K(s, s′)u′(s′) ds′ ds, (4.16)

with boundary conditions α(0) = z0, α(L) = z1 and α′′(0) = α′′(L) = 0. The function w is the solution of the
adjoint problem∫

Γ(α)

w(s)φ(s) ds −
∫

Γ(α)

φ(s)
∫

Γ(α)

K(s, s′)w(s′) ds′ds = −
∫

Γ2

(u(s)− U(s))φ(s) ds ∀φ ∈ L2(Γ(α))

(4.17)

and u solution of the radiation equation∫
Γ(α)

u(s)φ(s) ds =
∫

Γ(α)

φ(s)
∫

Γ(α)

K(s, s′)u(s′) ds′ds+
∫

Γ(α)

f(s)φ(s) ds ∀φ ∈ L2(Γ(α)). (4.18)
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Proof. Let (u, α) be an optimal solution of the problem (4.3–4.4). We compute the Gateaux derivative of the
functional J (u, α) in the direction δα from Theorem 4.4 and then Lemma 4.6 completes the proof. We have

DJ (u, α)
Dα

· δα =
∫

Γ2

w̃ (u− U) ds+ γ

∫
I

d2α

dx2

d2δα

dx2
dx.

Now, by using Lemma 4.6, we obtain

J ′(u, α) · δα =
DJ (u, α)

Dα
· δα = γ

∫
I

d2α

dx2

d2δα

dx2
dx+

∫
Γ(α)

w(s)
∫

Γα

κ(s′) (~V (δα′) · ~n(s′))K(s, s′)u′(s′) ds′ds,

(4.19)

where w is the solution of (4.17). Now, the theorem follows from the Theorem 4.5. �

The system (4.15–4.18) is not linear and it must be solved iteratively. It is convenient to write (4.15–4.18)
in a different form. We define two new variables q and µ by

q =
d2α

dx2

and ∫
I

µ
d2v

dx2
dx =

∫
Γ(α)

w(s)
∫

Γα

κ(s′) (~V (v′) · ~n(s′))K(s, s′)u(s′) ds′ ds ∀ v ∈ H1
0 (I) ∩H2(I)

with Dirichlet boundary conditions. With these variables in order to solve the optimal shape problem we have
to solve, for (u,w, α, µ, q), the pure radiation equation∫

Γ(α)

u(s)φ(s) ds−
∫

Γ(α)

φ(s)
∫

Γ(α)

K(s, s′)u(s′) ds′ ds =
∫

Γ(α)

f(s)φ(s)ds ∀φ ∈ L2(Γ), (4.20)

the adjoint equation∫
Γ(α)

w(s)φ(s) ds −
∫

Γ(α)

φ(s)
∫

Γ(α)

K(s, s′)w(s′) ds′ ds = −
∫

Γ2

(u(s)− U(s))φ(s) ds ∀φ ∈ L2(Γ),

(4.21)

the shape equation

−
∫
I

dα

dx

dv

dx
dx =

∫
I

q v dx ∀ v ∈ H1
0 (I) (4.22)

with α(0) = 0 and α(L) = 0, the adjoint shape equation

−
∫
I

dµ

dx

dv

dx
dx =

∫
Γ(α)

w(s)
∫

Γα

κ(s′) (~V (v) · ~n(s′))K(s, s′)u(s′) ds′ ds, (4.23)
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for all v ∈ H1
0 (I) ∩H2(I) with Dirichlet boundary conditions and the variational equation∫

I

(γq + µ) (q̃ − q)dx ≥ 0 ∀ α̃ ∈ Qad(I), (4.24)

where q̃ = α̃′′.
From (4.22) we have that if q ∈ L2(I) then α ∈ H2(I) and α ∈ C1(Ī). Furthermore α ∈ Qad and therefore

we can conclude that α ∈ C1,1(Ī). Also Γ2 is supposed to be in C1,1(Ī) and thus Γ ∈ C1,1(Ī). This regularity
is sufficient enough to guarantee u ∈ L2(Γ(α)). The formulation in (4.20–4.24) has some advantages from the
numerical point of view. For example this mixed variable formulation suggests a straightforward projected
gradient algorithm and the test functions in (4.23) have not to be necessarily inH2(I) (if the problem is regular
enough) leading to a very simple numerical solution for α and µ.

Numerical solutions of the pure radiative boundary equation can be found by using a wide range of
schemes [16, 23] and abstract “a priori” error estimates for finite elements approximations are available in
literature (see for example [23]). A finite element approximation and some industrial applications based on the
system (4.20–4.24) can be found in [14]. Since the curvature κ is not a smooth function then the integrand
in (4.23) is not smooth and the numerical integration of the kernel may not be accurate. In order to have
accurate results the integration over the basis functions (piecewice constant) may be done analytically. This
presents many problems as the curvature and the normal to the curve α change during the optimisation and
are not known in analytical form. In [14] we discretise the solution, perform the analytical integration of the
kernel and then find the first order necessity conditions directly on the discrete system.

Also in [14] we propose the following projected gradient algorithm for the solution of (4.20–4.24). Let J (k)
be J (u, q(k)), where J (·) is given by (4.1) and k be the iteration counter of the gradient algorithm. In the
algorithm τ will denote a prescribed tolerance used to test for the convergence of the functional. The projected
gradient algorithm proceeds as follows:

a) initialisation:
i) choose τ and α(0); set k = 0 and ρ0 = 1;
ii) solve for the starting field u(0) from (4.20) with α = α(0);
iii) evaluate J (0);

b) main loop:
iv) set k = k + 1;
v) solve for w(k) from (4.21) with u = u(k − 1) and α = α(k − 1);
vi) solve for µ(k) from (4.23) with u = u(k − 1), w = w(k) and α = α(k − 1);
vii) set q(k) = PL

(
q(k − 1) + ρkµ(k)/γ

)
and solve for α(k) from (4.22);

viii) solve for u(k) from (4.20) with α = α(k);
ix) evaluate J (k);
x) if J (k) ≥ J (k − 1), set ρk−1 = .5ρk−1 and go to vii); otherwise, continue;
xi) if |J (k)−J (k − 1)|/|J (k)| > τ , set ρk = 1.3ρk−1 and go to v); otherwise, stop.

In the above algorithm the operator PL is the projection operator over the set Qad. This is a very straightforward
approach and other more sophisticated methods can be devised for the solution of the system (4.20–4.23). One
can use also sensitivity methods. The sensitivity of the map u = u(α) is given by (4.9) and can be used to
know how the first derivative of the functional behaves in some particular directions. As result of numerical
computations in [14] we can summarise that the prescribed algorithm converges fast and produces good results
depending on initial data like source power, maximum admissible curvature and initial surface design.

5. Conclusions

In this paper we have presented some optimal control problems based on the heat radiative transfer equation.
The problems are formulated in such a way that the existence of solutions can be proved and consistent first
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order necessary conditions can be found in form of variational inequalities. The problems described in this paper
are basic and fundamental in the design of a desired environment where radiation is the predominant form of
heat exchange. The optimal control theory is a very flexible tool for industrial applications. Constraints arising
from real situations can be easily included in the formulation and different objective functionals can be used.

The authors would like to thank Prof. H. Neunzert and Dr. N. Siedow for their help and support.
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