Optimal control of obstacle problems : existence of Lagrange multipliers
ESAIM: Control, Optimisation and Calculus of Variations, Volume 5  (2000), p. 45-70
@article{COCV_2000__5__45_0,
     author = {Bergounioux, Ma\"\i tine and Mignot, Fulbert},
     title = {Optimal control of obstacle problems : existence of Lagrange multipliers},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {5},
     year = {2000},
     pages = {45-70},
     zbl = {0934.49008},
     mrnumber = {1745686},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2000__5__45_0}
}
Bergounioux, Maïtine; Mignot, Fulbert. Optimal control of obstacle problems : existence of Lagrange multipliers. ESAIM: Control, Optimisation and Calculus of Variations, Volume 5 (2000) , pp. 45-70. http://www.numdam.org/item/COCV_2000__5__45_0/

[1] D.R. Adams, S. Lenhart and J. Yong, Optimal control of variational inequalities. Appl. Math. Optim. 38 ( 1998) 121-140. | MR 1624661 | Zbl 0914.49005

[2] V. Barbu, Optimal control of variational inequalities. Pitman, Boston, Res. Notes Math. 100 ( 1984). | MR 742624 | Zbl 0574.49005

[3] M. Bergounioux, Optimal control of an obstacle problem. Appl. Math. Optim. 36 ( 1997) 147-172. | MR 1455432 | Zbl 0934.49008

[4] M. Bergounioux, Optimal control of problems governed by abstract variational inequalities with state constraints. SIAM J. Control Optim. 36 ( 1998) 273-289. | MR 1616590 | Zbl 0919.49002

[5] M. Bergounioux, Augmented lagrangian method for distributed optimal control problems with state constraints. J. Optim. Theory Appl. 78 ( 1993) 493-521. | MR 1240433 | Zbl 0796.49003

[6] M. Bergounioux and H. Dietrich, Optimal control of problems governed by obstacle type variational inequalities: A dual regularization-penalization approach. J. Convex Anal. 5 ( 1998) 329-351. | MR 1670285 | Zbl 0919.49003

[7] M. Bergounioux, M. Haddou, M. Hintermueller and K. Kunisch, A comparison of interior point methods and a Moreau-Yosida based active set strategy for constrained optimal control problems. Report 98-15 Université d'Orléans ( 1998).

[8] M. Bergounioux and H. Zidani, Pontryagin principle for problems governed by parabolic variational inequalities. SIAM J. Control Optim. 37 ( 1999) 1273-1290. | MR 1691941 | Zbl 0938.49021

[9] A. Bermudez and C. Saguez, Optimal control of variational inequalities. Optimality conditions and numerical methods. Collection Free Boundary Problems, Application and Theory, Vol. IV. Maubusson, Res. Notes Math. 121 ( 1984) 478-487. | MR 903297

[10] A. Bermudez and C. Saguez, Optimal control of a Signorini Problem. SIAM J. Control Optim. 25 ( 1987) 576-582. | MR 885186 | Zbl 0617.49011

[11] P.G. Ciarlet and P.A. Raviart, Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg. 2 ( 1973) 17-31. | MR 375802 | Zbl 0251.65069

[12] W. Hackbusch, Elliptic Differential Equations, Theory and Numerical Treatment. Springer Verlag, Berlin, Ser. Comput. Math. 18 ( 1992). | MR 1197118 | Zbl 0755.35021

[13] K. Ito and K. Kunisch, An augmented Lagrangian technics for variational inequalities. Appl. Math. Optim. 21 ( 1990) 223-241. | MR 1036586 | Zbl 0692.49008

[14] K. Ito and K. Kunisch, Optimal control of elliptic variational inequalities, to appear. | MR 1739400 | Zbl 0960.49003

[15] S. Kurcyusz, On the existence and nonexistence of Lagrange multipliers in Banach spaces. J. Optim. Theory Appl. 5 ( 1976). 81-110. | MR 424249 | Zbl 0309.49010

[16] F. Mignot, Contrôle dans les inéquations variationnelles elliptiques. J. Funct. Anal. 22 ( 1976) 130-185. | MR 423155 | Zbl 0364.49003

[17] F. Mignot and J.P. Puel, Optimal control in some variational inequalities. SIAM J. Control Optim. 22 ( 1984) 466-476. | MR 739836 | Zbl 0561.49007

[18] F. Mignot and J.P. Puel, Contrôle optimal d'un système gouverné par une inéquation variationnelle parabolique. C. R. Acad. Sci. Paris Sér. I Math. 298 ( 1984) 277-280. | MR 745322 | Zbl 0561.49008

[19] D. Tiba and F. Tröltzsch, Error estimates for the discretization of state constrained convex control problems. Num. Funct. Anal. Optim. 17 ( 1996) 1005-1028. | MR 1421304 | Zbl 0899.49013

[20] L. Wenbin and J.E. Rubio, Optimality conditions for strongly monotone variational inequalities. Appl. Math. Optim. 27 ( 1993) 291-312. | MR 1201626 | Zbl 0779.49012

[21] J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 ( 1979) 49-62. | MR 526427 | Zbl 0401.90104