We investigate the minimum time transfer of a satellite around the Earth. Using an optimal control model, we study the controllability of the system and propose a geometrical analysis of the optimal command structure. Furthermore, in order to solve the problem numerically, a new parametric technique is introduced for which convergence properties are established.
On s'intéresse au transfert en temps minimal d'un satellite autour de la Terre. Sur la base d'une modélisation contrôle optimal, on étudie la controlabilité du système et on propose une analyse de la structure de la commande optimale. En outre, afin de procéder à la résolution numérique du problème, une nouvelle méthode paramétrique dont on établit des propriétés de convergence est définie.
Keywords: celestial mechanics, minimum time problems, geometric control, parametric optimal control
@article{COCV_2001__6__239_0, author = {Caillau, Jean-Baptiste and Noailles, Joseph}, title = {Coplanar control of a satellite around the earth}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {239--258}, publisher = {EDP-Sciences}, volume = {6}, year = {2001}, mrnumber = {1816074}, zbl = {1036.70014}, language = {en}, url = {http://archive.numdam.org/item/COCV_2001__6__239_0/} }
TY - JOUR AU - Caillau, Jean-Baptiste AU - Noailles, Joseph TI - Coplanar control of a satellite around the earth JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2001 SP - 239 EP - 258 VL - 6 PB - EDP-Sciences UR - http://archive.numdam.org/item/COCV_2001__6__239_0/ LA - en ID - COCV_2001__6__239_0 ER -
Caillau, Jean-Baptiste; Noailles, Joseph. Coplanar control of a satellite around the earth. ESAIM: Control, Optimisation and Calculus of Variations, Volume 6 (2001), pp. 239-258. http://archive.numdam.org/item/COCV_2001__6__239_0/
[1] Towards a geometric theory in the time minimal control of chemical batch reactors. SIAM J. Control Optim. 33 (1995) 1279-1311. | Zbl
and ,[2] Time minimal control of batch reactors. ESAIM: COCV 3 (1998) 407-467. | Numdam | Zbl
and ,[3] Contribution à l'étude du contrôle en temps minimal des transferts orbitaux. Ph.D. Thesis, ENSEEIHT, Institut National Polytechnique de Toulouse, France (2000).
,[4] Continuous optimal control sensitivity analysis with AD, in Proc. of the 3rd International Conference on Automatic Differentiation. INRIA Nice, France (2000).
and ,[5] Sensitivity analysis for time optimal orbit transfer. Optimization 49 (2001) 327-350. | Zbl
and ,[6] Optimization Theory and Applications. Springer-Verlag (1983). | MR | Zbl
,[7] Optimal control for engines with electro-ionic propulsion under constraint of eclipse. Acta Astronautica (to appear).
and ,[8] Variations sur la notion de contrôlabilité, in Quelques aspects de la théorie du contrôle. Journée Annuelle de la Société Mathématique de France (2000). | MR | Zbl
,[9] Averaging techniques in optimal control for orbital low-thrust transfers and rendez-vous computation1996) 166-171.
, and ,[10] Géométrie différentielle et mécanique analytique. Hermann, Paris (1985). | Zbl
,[11] Geometric control theory. Cambridge University Press (1997). | MR | Zbl
,[12] Sufficient optimality conditions for optimal control subject to state constraints. SIAM J. Control Optim. 35 (1997) 205-227. | Zbl
,[13] Sensitivity analysis for parametric optimal control problems with control-state constraints. Comp. Optim. Appl. 5 (1996) 253-283. | Zbl
and ,[14] A new method for the time optimal control problem and its application to low thrust orbital transfer. Workshop on low thrust transfers, Toulouse, France, French Space Agency, CNES (2000).
and ,[15] Contrôle en temps minimal et transfert orbital à faible poussée1998) 705-724. | Zbl
and ,[16] Geometry and Optimal Control1998). | MR | Zbl
,[17] Résultats récents sur les courbes optimales, in Quelques aspects de la théorie du contrôle. Journée Annuelle de la Société Mathématique de France (2000). | MR | Zbl
,[18] Trajectoires spatiales. CNES-Cepadues, Toulouse, France (1987).
,