Simultaneous controllability in sharp time for two elastic strings
ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 259-273.

We study the simultaneously reachable subspace for two strings controlled from a common endpoint. We give necessary and sufficient conditions for simultaneous spectral and approximate controllability. Moreover we prove the lack of simultaneous exact controllability and we study the space of simultaneously reachable states as a function of the position of the joint. For each type of controllability result we give the sharp controllability time.

Classification : 93B,  35L,  42
Mots clés : exact controllability, spectral controllability, approximate controllability, simultaneous controllability, string equation, boundary control, Riesz basis
@article{COCV_2001__6__259_0,
     author = {Avdonin, Sergei and Tucsnak, Marius},
     title = {Simultaneous controllability in sharp time for two elastic strings},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {259--273},
     publisher = {EDP-Sciences},
     volume = {6},
     year = {2001},
     zbl = {0995.93036},
     mrnumber = {1816075},
     language = {en},
     url = {http://archive.numdam.org/item/COCV_2001__6__259_0/}
}
TY  - JOUR
AU  - Avdonin, Sergei
AU  - Tucsnak, Marius
TI  - Simultaneous controllability in sharp time for two elastic strings
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2001
DA  - 2001///
SP  - 259
EP  - 273
VL  - 6
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/COCV_2001__6__259_0/
UR  - https://zbmath.org/?q=an%3A0995.93036
UR  - https://www.ams.org/mathscinet-getitem?mr=1816075
LA  - en
ID  - COCV_2001__6__259_0
ER  - 
Avdonin, Sergei; Tucsnak, Marius. Simultaneous controllability in sharp time for two elastic strings. ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 259-273. http://archive.numdam.org/item/COCV_2001__6__259_0/

[1] S.A. Avdonin, Simultaneous controllability of several elastic strings, in Proc. CD of the Fourteenth International Symposium on Mathematical Theory of Networks and Systems. Perpignan, France, June 19-23 (2000).

[2] S.A. Avdonin and S.A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems. Cambridge University Press, New York (1995). | MR 1366650 | Zbl 0866.93001

[3] C. Baiocchi, V. Komornik and P. Loreti, Ingham type theorems and applications to control theory. Boll. Un. Mat. Ital. B 2 (1999) 33-63. | MR 1794544 | Zbl 0924.42022

[4] C. Baiocchi, V. Komornik and P. Loreti, Généralisation d'un théorème de Beurling et application à la théorie du contrôle. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 281-286. | Zbl 0964.42019

[5] J.W.S. Cassels, An Introduction to Diophantine Approximation. Cambridge University Press, Cambridge (1965). | MR 87708 | Zbl 0077.04801

[6] S. Dolecki and D.L. Russell, A general theory of observation and control. SIAM J. Control Optim. 15 (1977) 185-220. | MR 451141 | Zbl 0353.93012

[7] S. Jaffard, M. Tucsnak and E. Zuazua, Singular internal stabilization of the wave equation. J. Differential Equations 145 (1998) 184-215. | MR 1620290 | Zbl 0920.35029

[8] S. Jaffard, M. Tucsnak and E. Zuazua, On a theorem of Ingham. J. Fourier Anal. Appl. 3 (1997) 577-582. | MR 1491935 | Zbl 0939.42004

[9] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences. John Wiley & Sons, New York (1974). | MR 419394 | Zbl 0281.10001

[10] J.E. Lagnese and J.L. Lions, Modelling, Analysis and Control of Thin Plates. Masson, Paris (1988). | MR 953313 | Zbl 0662.73039

[11] S. Lang, Introduction to Diophantine Approximations. Addison Wesley, New York (1966). | MR 209227 | Zbl 0144.04005

[12] J.-L. Lions, Controlabilité Exacte Perturbations et Stabilisation de Systèmes Distribués, Volume 1. Masson, Paris (1988).

[13] N.K. Nikol'Skii, A Treatise on the Shift Operator. Moscow, Nauka, 1980 (Russian); Engl. Transl., Springer, Berlin (1986).

[14] B.S. Pavlov, Basicity of an exponential systems and Muckenhoupt's condition. Dokl. Akad. Nauk SSSR 247 (1979) 37-40 (Russian); English transl. in Soviet Math. Dokl. 20 (1979) 655-659. | Zbl 0429.30004

[15] W. Rudin, Real and complex analysis. McGraw-Hill, New York (1987). | MR 924157 | Zbl 0925.00005

[16] D.L. Russell, The Dirichlet-Neumann boundary control problem associated with Maxwell's equations in a cylindrical region. SIAM J. Control Optim. 24 (1986) 199-229. | Zbl 0594.49026

[17] M. Tucsnak and G. Weiss, Simultaneous exact controllability and some applications. SIAM J. Control Optim. 38 (2000) 1408-1427. | MR 1766422 | Zbl 0982.93021

[18] R. Young, An Introduction to Nonharmonic Fourier Series. Academic Press, New York (1980). | MR 591684 | Zbl 0493.42001