We consider the problem of electrical impedance tomography where conductivity distribution in a domain is to be reconstructed from boundary measurements of voltage and currents. It is well-known that this problem is highly illposed. In this work, we propose the use of the Mumford-Shah functional, developed for segmentation and denoising of images, as a regularization. After establishing existence properties of the resulting variational problem, we proceed by demonstrating the approach in several numerical examples. Our results indicate that this is an effective approach for overcoming the illposedness. Moreover, it has the capability of enhancing the reconstruction while at the same time segmenting the conductivity image.
Mots-clés : electrical impedance tomography, inverse problems for elliptic equations, regularization of illposed problem, image enhancement
@article{COCV_2001__6__517_0, author = {Rondi, Luca and Santosa, Fadil}, title = {Enhanced electrical impedance tomography via the {Mumford-Shah} functional}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {517--538}, publisher = {EDP-Sciences}, volume = {6}, year = {2001}, zbl = {0989.35136}, language = {en}, url = {http://archive.numdam.org/item/COCV_2001__6__517_0/} }
TY - JOUR AU - Rondi, Luca AU - Santosa, Fadil TI - Enhanced electrical impedance tomography via the Mumford-Shah functional JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2001 SP - 517 EP - 538 VL - 6 PB - EDP-Sciences UR - http://archive.numdam.org/item/COCV_2001__6__517_0/ LA - en ID - COCV_2001__6__517_0 ER -
%0 Journal Article %A Rondi, Luca %A Santosa, Fadil %T Enhanced electrical impedance tomography via the Mumford-Shah functional %J ESAIM: Control, Optimisation and Calculus of Variations %D 2001 %P 517-538 %V 6 %I EDP-Sciences %U http://archive.numdam.org/item/COCV_2001__6__517_0/ %G en %F COCV_2001__6__517_0
Rondi, Luca; Santosa, Fadil. Enhanced electrical impedance tomography via the Mumford-Shah functional. ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 517-538. http://archive.numdam.org/item/COCV_2001__6__517_0/
[A1] A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. B 3 (1989) 857-881. | MR | Zbl
,[A2] Existence theory for a new class of variational problems. Arch. Rational Mech. Anal. 111 (1990) 291-322. | MR | Zbl
,[A-F-P] Functions of bounded variation and free discontinuity problems. Clarendon Press, Oxford (2000). | MR | Zbl
, and ,[A-T1] Approximation of functionals depending on jumps by elliptic functionals via -convergence. Comm. Pure Appl. Math. 43 (1990) 999-1036. | MR | Zbl
and ,[A-T2] On the approximation of free discontinuity problem. Boll. Un. Mat. Ital. B 6 (1992) 105-123. | MR | Zbl
and ,[B-Z] Visual Reconstruction. The MIT Press, Cambridge Mass, London (1987). | MR
and ,[Bo-V] An elliptic regularity result for a composite medium with “touching” fibers of circular cross-section. SIAM J. Math. Anal. 31 (2000) 651-677. | Zbl
and ,[Br] Approximation of Free-Discontinuity Problems. Springer-Verlag, Berlin Heidelberg New York (1998). | MR | Zbl
,[C] On an inverse boundary value problem, in Seminar on Numerical Analysis and its Applications to Continuum Physics. Sociedade Brasileira de Matemática, Rio de Janeiro (1980) 65-73. | MR
,[Co-Ta] On the existence of solutions to a problem in multidimensional segmentation. Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991) 175-195. | Numdam | MR | Zbl
and ,[DM] An Introduction to -convergence. Birkhäuser, Boston Basel Berlin (1993). | MR | Zbl
,[DG-Ca-L] Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal. 108 (1989) 195-218. | MR | Zbl
, and ,[D] Stability and Regularity of an Inverse Elliptic Boundary Value Problem, Ph.D. Thesis. Rice University, Houston (1990).
,[D-S] An image-enhancement technique for electrical impedance tomography. Inverse Problems 10 (1994) 317-334. | MR | Zbl
and ,[E-G] Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton Ann Arbor London (1992). | MR | Zbl
and ,[I] Inverse Problems for Partial Differential Equations. Springer-Verlag, New York Berlin Heidelberg (1998). | MR | Zbl
,[Gi] Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston Basel Stuttgart (1984). | MR | Zbl
,[K-St] An Introduction to Variational Inequalities and Their Applications. Academic Press, New York London Toronto (1980). | MR | Zbl
and ,[Ko-V] Determining conductivity by boundary measurements. Comm. Pure Appl. Math. 37 (1984) 289-298. | MR | Zbl
and ,[Li-V] Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients. Arch. Rational Mech. Anal. 153 (2000) 91-151. | MR | Zbl
and ,[M] An -estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17 (1963) 189-205. | Numdam | MR | Zbl
,[Mu-Sh1] Boundary detection by minimizing functionals, I, in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Press/North-Holland, Silver Spring Md./Amsterdam (1985) 22-26.
and ,[Mu-Sh2] Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577-685. | MR | Zbl
and ,[Sy-U] A global uniqueness theorem for an inverse boundary value problem. Ann. Math. 125 (1987) 153-169. | MR | Zbl
and ,[Tr] Elliptic Differential Equations and Obstacle Problems. Plenum Press, New York London (1987). | MR | Zbl
,