If a second order semilinear conservative equation with esssentially oscillatory solutions such as the wave equation is perturbed by a possibly non monotone damping term which is effective in a non negligible sub-region for at least one sign of the velocity, all solutions of the perturbed system converge weakly to 0 as time tends to infinity. We present here a simple and natural method of proof of this kind of property, implying as a consequence some recent very general results of Judith Vancostenoble.
Mots-clés : weak stabilization, semilinear, wave equations
@article{COCV_2001__6__553_0, author = {Haraux, Alain}, title = {Remarks on weak stabilization of semilinear wave equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {553--560}, publisher = {EDP-Sciences}, volume = {6}, year = {2001}, mrnumber = {1849416}, zbl = {0988.35029}, language = {en}, url = {http://archive.numdam.org/item/COCV_2001__6__553_0/} }
TY - JOUR AU - Haraux, Alain TI - Remarks on weak stabilization of semilinear wave equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2001 SP - 553 EP - 560 VL - 6 PB - EDP-Sciences UR - http://archive.numdam.org/item/COCV_2001__6__553_0/ LA - en ID - COCV_2001__6__553_0 ER -
Haraux, Alain. Remarks on weak stabilization of semilinear wave equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 553-560. http://archive.numdam.org/item/COCV_2001__6__553_0/
[1] Abstract almost periodic functions and functional equations. Van Nostrand, New-York (1971). | MR | Zbl
and ,[2] Feedback stabilization of distributed semilinear control systems. Appl. Math. Optim. 5 (1979) 169-179. | MR | Zbl
and ,[3] Sur les solutions bornées et presque périodiques des équations et inéquations d'évolution. Ann. Math. Pura Appl. 93 (1972) 1-79. | Zbl
,[4] Propriétés oscillatoires des solutions de certaines équations des ondes semi-linéaires. C. R. Acad. Sci. Paris Sér. I Math. 298 (1984) 449-452. | MR | Zbl
and ,[5] Oscillatory phenomena associated to semilinear wave equations in one spatial dimension. Trans. Amer. Math. Soc. 300 (1987) 207-233. | MR | Zbl
and ,[6] Some oscillatory properties of the wave equation in several space dimensions. J. Funct. Anal. 76 (1988) 87-109. | MR | Zbl
and ,[7] Une équation des ondes complètement intégrable avec non-linéarité homogène de degré 3. C. R. Acad. Sci. Paris Sér. I Math. 313 (1991) 237-241. | MR | Zbl
, and ,[8] A class of nonlinear completely integrable abstract wave equations. J. Dynam. Differential Equations 5 (1993) 129-154. | MR | Zbl
, and ,[9] Detailed asymptotics for a convex hamiltonian system with two degrees of freedom. J. Dynam. Differential Equations 5 (1993) 155-187. | MR | Zbl
, and ,[10] Stabilization of second order evolution equations by unbounded nonlinear feedbacks. Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 485-515. | Numdam | MR | Zbl
and ,[11] Comportement à l'infini pour une équation des ondes non linéaire dissipative. C. R. Acad. Sci. Paris Sér. I Math. 287 (1978) 507-509. | Zbl
,[12] Comportement à l'infini pour certains systèmes dissipatifs non linéaires. Proc. Roy. Soc. Edinburgh Ser. A 84 (1979) 213-234. | Zbl
,[13] Stabilization of trajectories for some weakly damped hyperbolic equations. J. Differential Equations 59 (1985) 145-154. | MR | Zbl
,[14] Oscillations of anharmonic Fourier series and the wave equation. Rev. Mat. Iberoamericana 1 (1985) 57-77. | MR | Zbl
and ,[15] Semi-linear hyperbolic problems in bounded domains, Mathematical Reports Vol. 3, Part 1 , edited by J. Dieudonné. Harwood Academic Publishers, Gordon & Breach (1987). | MR | Zbl
,[16] Systèmes dynamiques dissipatifs et applications, R.M.A. 17, edited by Ph. Ciarlet and J.L. Lions. Masson, Paris (1990). | MR | Zbl
,[17] Strong oscillatory behavior of solutions to some second order evolution equations, Publication du Laboratoire d'Analyse Numérique 94033, 10 p.
,[18] Almost periodic functions and differential equations. Cambridge University Press, Cambridge (1982). | MR | Zbl
and ,[19] Weak asymptotic decay via a relaxed invariance principle for a wave equation with nonlinear, nonmonotone damping. Proc. Roy. Soc. Edinburgh Ser. A 113 (1989) 87-97. | MR | Zbl
,[20] Weak asymptotic stability of second order evolution equations by nonlinear and nonmonotone feedbacks. SIAM J. Math. Anal. 30 (1998) 140-154. | MR | Zbl
,[21] Weak asymptotic decay for a wave equation with weak nonmonotone damping, 17p (to appear).
,[22] Compactness of trajectories of dynamical systems in infinite dimensional spaces. Proc. Roy. Soc. Edinburgh Ser. A 84 (1979) 19-34. | MR | Zbl
,