Relaxation of optimal control problems in đ–« 𝗉 -spaces
ESAIM: Control, Optimisation and Calculus of Variations, Volume 6  (2001), p. 73-95

We consider control problems governed by semilinear parabolic equations with pointwise state constraints and controls in an L p -space (p<∞). We construct a correct relaxed problem, prove some relaxation results, and derive necessary optimality conditions.

Classification:  49K40,  49K20,  49J20
Keywords: optimal control problems, relaxation, generalized Young measures, stability properties, Pontryagin's principle
@article{COCV_2001__6__73_0,
     author = {Arada, Nadir},
     title = {Relaxation of optimal control problems in $\sf L^p$-spaces},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {6},
     year = {2001},
     pages = {73-95},
     zbl = {0965.49016},
     mrnumber = {1804498},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2001__6__73_0}
}
Arada, Nadir. Relaxation of optimal control problems in $\sf L^p$-spaces. ESAIM: Control, Optimisation and Calculus of Variations, Volume 6 (2001) , pp. 73-95. http://www.numdam.org/item/COCV_2001__6__73_0/

[1] N.U. Ahmed, Properties of relaxed trajectories for a class of nonlinear evolution equations on a Banach space. SIAM J. Control Optim. 21 (1983) 953-967. | Zbl 0524.49008

[2] N. Arada and J.P. Raymond, State-constrained relaxed control problems for semilinear elliptic equations. J. Math. Anal. Appl. 223 (1998) 248-271. | Zbl 0911.35018

[3] N. Arada and J.P. Raymond, Stability analysis of relaxed Dirichlet boundary control problems. Control Cybernet. 28 (1999) 35-51. | Zbl 0943.49010

[4] J.M. Ball, A version of the fundamental theorem for Young's measures, in PDE's and Continuum Models of Phase Transition, edited by M. Rascle, D. Serre and M. Slemrod. Springer, Berlin, Lecture Notes in Phys. 344 (1989) 207-215. | Zbl 0991.49500

[5] E. Casas, The relaxation theory applied to optimal control problems of semilinear elliptic equations, in System Modelling and Optimization, edited by J. DoleĆŸal and J. Fidler. Chapman & Hall, London (1996) 187-194. | MR 1471268 | Zbl 0880.49032

[6] E. Di Benedetto, Degenerate Parabolic Equations. Springer-Verlag, New York (1993). | MR 1230384 | Zbl 0794.35090

[7] R.J. Diperna and A.J. Majda, Oscillation and concentrations in the weak solutions of the incompressible fluid equations. Comm. Math. Phys. 108 (1987) 667-689. | MR 877643 | Zbl 0626.35059

[8] L.C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS 74. American Mathematical Society (1990). | MR 1034481 | Zbl 0698.35004

[9] H.O. Fattorini, Infinite Dimensional Optimization and Control Theory, Encyclopedia of Mathematics and its Applications. Cambridge University Press (1998). | MR 1669395 | Zbl 0931.49001

[10] R.V. Gamkrelidze, Principles of Optimal Control Theory. Plenum Press, New York (1978). | MR 686793 | Zbl 0401.49001

[11] A. Ghouila-Houri, Sur la généralisation de la notion de commande optimale d'un systÚme guidable. Rev. Franç. Info. Rech. Oper. 1 (1967) 7-32. | Numdam | Zbl 0153.20403

[12] D. Kinderlehrer and P. Pedregal, Characterizations of Young measures generated by gradients. Arch. Rational Mech. Anal. 115 (1991) 329-365. | MR 1120852 | Zbl 0754.49020

[13] D. Kinderlehrer and P. Pedregal, Gradients Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4 (1994) 59-90. | MR 1274138 | Zbl 0808.46046

[14] P.L. Lions, The concentration-compactness principle in the calculus of variations: The locally compact case, Parts. 1 and 2. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 109-145, 223-283. | Numdam | Numdam | MR 778970 | Zbl 0704.49004

[15] E.J. Mcshane, Necessary conditions in the generalized-curve problems of the calculus of variations. Duke Math. J. 7 (1940) 513-536. | MR 3478 | Zbl 0024.32503

[16] N.S. Papageorgiou, Properties of the relaxed trajectories of evolution equations and optimal control. SIAM J. Control Optim. 27 (1989) 267-288. | MR 984828 | Zbl 0678.49002

[17] J.P. Raymond, Nonlinear boundary control of semilinear parabolic equations with pointwise state constraints. Discrete Contin. Dynam. Systems 3 (1997) 341-370. | MR 1444199 | Zbl 0953.49026

[18] J.P. Raymond and H. Zidani, Hamiltonian Pontryaguin's principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim. 39 (1999) 143-177. | Zbl 0922.49013

[19] T. Roubíček, Relaxation in Optimization Theory and Variational Calculus. De Gruyter Series in Nonlinear Analysis and Applications (1997). | MR 1458067 | Zbl 0880.49002

[20] T. Roubíček, Convex locally compact extensions of Lebesgue spaces anf their applications, in Calculus of Variations and Optimal Control, edited by A. Ioffe, S. Reich and I. Shafrir. Chapman & Hall, CRC Res. Notes in Math. 411, CRC Press, Boca Raton, FL (1999) 237-250. | MR 1713866 | Zbl 0964.49012

[21] M.E. Schonbek, Convergence of solutions to nonlinear dispersive equations. Comm. Partial Differential Equations 7 (1982) 959-1000. | MR 668586 | Zbl 0496.35058

[22] L. Tartar, Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics, Heriott-Watt Symposium IV, Pitmann Res. Notes in Math. 39 (1979). | MR 584398 | Zbl 0437.35004

[23] J. Warga, Optimal control of differential and functional equations. Academic Press, New York (1972). | MR 372708 | Zbl 0253.49001

[24] X. Xiang and N.U. Ahmed, Properties of relaxed trajectories of evolution equations and optimal control. SIAM J. Control Optim. 31 (1993) 1135-1142. | MR 1233996 | Zbl 0785.93051

[25] L.C. Young, Lectures on the Calculus of Variations and Optimal Control Theory. W.B. Saunders, Philadelphia (1969). | MR 259704 | Zbl 0177.37801