Correcteurs proportionnels-intégraux généralisés
ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 23-41.

Nous introduisons pour les systèmes linéaires constants les reconstructeurs intégraux et les correcteurs proportionnels-intégraux généralisés, qui permettent d'éviter le terme dérivé du PID classique et, plus généralement, les observateurs asymptotiques usuels. Notre approche, de nature essentiellement algébrique, fait appel à la théorie des modules et au calcul opérationnel de Mikusiński. Plusieurs exemples sont examinés.

For constant linear systems we are introducing integral reconstructors and generalized proportional-integral controllers, which permit to bypass the derivative term in the classic PID controllers and more generally the usual asymptotic observers. Our approach, which is mainly of algebraic flavour, is based on the module-theoretic framework for linear systems and on operational calculus in Mikusiński's setting. Several examples are discussed.

DOI : https://doi.org/10.1051/cocv:2002002
Classification : 13A99,  44A40,  93B25,  93B52
Mots clés : PID controllers, generalized proportional-integral controllers, integral reconstructors, modules, operational calculus, localization
@article{COCV_2002__7__23_0,
     author = {Fliess, Michel and Marquez, Richard and Delaleau, Emmanuel and Sira-Ram{\'\i}rez, Hebertt},
     title = {Correcteurs proportionnels-int\'egraux g\'en\'eralis\'es},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {23--41},
     publisher = {EDP-Sciences},
     volume = {7},
     year = {2002},
     doi = {10.1051/cocv:2002002},
     zbl = {1037.93040},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.1051/cocv:2002002/}
}
TY  - JOUR
AU  - Fliess, Michel
AU  - Marquez, Richard
AU  - Delaleau, Emmanuel
AU  - Sira-Ramírez, Hebertt
TI  - Correcteurs proportionnels-intégraux généralisés
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2002
DA  - 2002///
SP  - 23
EP  - 41
VL  - 7
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv:2002002/
UR  - https://zbmath.org/?q=an%3A1037.93040
UR  - https://doi.org/10.1051/cocv:2002002
DO  - 10.1051/cocv:2002002
LA  - fr
ID  - COCV_2002__7__23_0
ER  - 
Fliess, Michel; Marquez, Richard; Delaleau, Emmanuel; Sira-Ramírez, Hebertt. Correcteurs proportionnels-intégraux généralisés. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 23-41. doi : 10.1051/cocv:2002002. http://archive.numdam.org/articles/10.1051/cocv:2002002/

[1] B. D'Andréa-Novel et M. Cohen De Lara, Commande linéaire de systèmes dynamiques. Masson (1993). | Zbl 0814.93003

[2] K.J. Aström et T. Hägglund, PID Controllers: Theory, Design, and Tuning. Instrument Society of America (1995).

[3] H. Bourlès et M. Fliess, Finite poles and zeros of linear systems: An intrinsic approach. Internat. J. Control 68 (1997) 897-922. | MR 1689711 | Zbl 1034.93009

[4] A. Erdélyi, Operational Calculus and Generalized Functions. Holt Rinehard Winston (1962). | MR 142990 | Zbl 0123.09502

[5] M. Fliess, Some Basic Structural Properties of Generalized Linear Systems. Systems Control Lett. 15 (1990) 391-396. | MR 1084580 | Zbl 0727.93024

[6] M. Fliess, A Remark on Willems' Trajectory Characterization of Linear Controllability. Systems Control Lett. 19 (1992) 43-45. | Zbl 0765.93003

[7] M. Fliess, Une interprétation algébrique de la transformation de Laplace et des matrices de transfert. Linear Alg. Appl. 203-204 (1994) 429-442. | MR 1275520 | Zbl 0802.93010

[8] M. Fliess, Sur des pensers nouveaux faisons des vers anciens, dans Actes Conférence Internationale Francophone d'Automatique (CIFA'2000), édité par P. Borne, J.-P. Richard et Ph. Vanheeghe. Lille (2000) 26-36.

[9] M. Fliess, J. Lévine, P. Martin et P. Rouchon, Flatness and defect of non-linear systems: Introductory theory and examples. Internat. J. Control 61 (1995) 1327-1361. | MR 1613557 | Zbl 0838.93022

[10] M. Fliess, J. Lévine, P. Martin et P. Rouchon, A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems. IEEE Trans. Automat. Control. 44 (1999) 922-937. | Zbl 0964.93028

[11] M. Fliess et R. Marquez, Continuous-time linear predictive control and flatness: A module-theoretic setting with examples. Internat. J. Control 73 (2000) 606-623. | MR 1768024 | Zbl 1006.93508

[12] M. Fliess, R. Marquez et E. Delaleau, State feedbacks without asymptotic observers and generalized PID regulators, dans Nonlinear Control in the Year 2000, édité par A. Isidori, F. Lamnabhi-Lagarrigue et W. Respondek. Springer, Lecture Notes in Control Inform. Sci. 258 (2000) 367-384.

[13] M. Fliess, R. Marquez et H. Mounier, PID-like regulators for a class of linear delay systems2001).

[14] M. Fliess, R. Marquez et H. Mounier, An extension of predictive control, PID regulators and Smith predictors to some linear delay systems. Internat. J. Control (à paraître). | MR 1916231 | Zbl 1021.93015

[15] M. Fliess et H. Mounier, Controllability and observability of linear delay systems: An algebraic approach. ESAIM: COCV 3 (1998) 301-314. | Numdam | MR 1644427 | Zbl 0908.93013

[16] G.F. Franklin, J.D. Powell et A. Emami, Feedback Control of Dynamic Systems, 3 rd Ed. Addison Wesley (1994). | Zbl 0615.93001

[17] N. Jacobson, Basic Algebra I & II. Freeman (1974 & 1980). | MR 356989 | Zbl 0284.16001

[18] T. Kailath, Linear Systems. Prentice-Hall (1980). | MR 569473 | Zbl 0454.93001

[19] P. De Larminat, Contrôle d'état standard. Hermès (2000). | Zbl 0967.93001

[20] R. Marquez, À propos de quelques méthodes classiques de commande linéaire : commande prédictive, correcteurs proportionnels-intégraux généralisés, prédicteurs de Smith. Thèse, Université Paris-Sud, Orsay (2001).

[21] R. Marquez, E. Delaleau et M. Fliess, Commande par PID généralisé d'un moteur électrique sans capteur mécanique, dans Actes Conférence Internationale Francophone d'Automatique (CIFA'2000), édité par P. Borne, J.-P. Richard et Ph. Vanheeghe. Lille (2000) 453-458.

[22] P. Martin, S. Devasia et B. Paden, A different look at output tracking: Control of a VTOL aircraft. Automatica 32 (1996) 101-107. | Zbl 0850.93583

[23] J. Mikusiński, Operational Calculus, 2 nd Ed., Vol. 1. PWN & Oxford University Press (1983). | MR 737380 | Zbl 0532.44003

[24] J. Mikusiński et T.K. Boehme, Operational Calculus, 2 nd Ed., Vol. 2. PWN & Oxford University Press (1987). | MR 902363 | Zbl 0643.44005

[25] L. Pernebo, An algebraic theory for the design of controllers for linear multivariable systems-Part I: Structure matrices and feedforward design. IEEE Trans. Automat. Control 26 (1981) 171-181. | Zbl 0467.93040

[26] L. Pernebo, An algebraic theory for the design of controllers for linear multivariable systems-Part II: Feedback realizations and feedback design. IEEE Trans. Automat. Control 26 (1981) 182-194. | Zbl 0467.93041

[27] B. Van Der Pol et H. Bremmer, Operational Calculus Based on the Two-Sided Laplace Integral, 2 nd Ed. Cambridge University Press (1955). | MR 72988 | Zbl 0066.09101

[28] N. Singer, W. Singhose et W. Seering, Comparison of filtering methods for reducing residual vibrations. Eur. J. Control 5 (1999) 208-218. | Zbl 0973.74603

[29] H. Sira-Ramírez, R. Marquez et M. Fliess, On the generalized PID control of linear dynamic systems2001).

[30] H. Sira-Ramírez, R. Marquez et M. Fliess, Generalized PID sliding mode control of DC-to-DC power converters, dans Proc. IFAC Conf. Syst. Struct. Control. Prague (2001).

[31] H. Sira-Ramírez, R. Marquez et V.M. Hernández, Sliding mode control without state measurements2001).

[32] H. Sira-Ramírez et G. Silva-Navarro, Generalized PID control of the average boost converter circuit model, dans Proc. Nonlinear Control Network Workshop. Sheffield (2001). | Zbl 1021.93028

[33] J.J.E. Slotine et W. Li, Applied Nonlinear Control. Prentice Hall (1991). | Zbl 0753.93036

[34] S. Spurgeon et C. Edwards, Sliding Mode Control: Theory and Practice. Taylor and Francis (1998).

[35] K.E. Tan, Q.-G. Wang, T.H. Lee et T.J. Hägglund, Advances in PID Control. Springer (1999).

[36] W.A. Wolovich, Automatic Control Systems: Basic Analysis and Design. Holt Rinehart and Winston (1994).

[37] K. Yosida, Operational Calculus. Springer (1984). | MR 752699 | Zbl 0542.44001

Cité par Sources :