In this paper, we study the homogenization and localization of a spectral transport equation posed in a locally periodic heterogeneous domain. This equation models the equilibrium of particles interacting with an underlying medium in the presence of a creation mechanism such as, for instance, neutrons in nuclear reactors. The physical coefficients of the domain are -periodic functions modulated by a macroscopic variable, where is a small parameter. The mean free path of the particles is also of order . We assume that the leading eigenvalue of the periodicity cell problem admits a unique minimum in the domain at a point where its hessian matrix is positive definite. This assumption yields a concentration phenomenon around , as goes to , at a new scale of the order of which is superimposed with the usual oscillations of the homogenized limit. More precisely, we prove that the particle density is asymptotically the product of two terms. The first one is the leading eigenvector of a cell transport equation with periodic boundary conditions. The second term is the first eigenvector of a homogenized diffusion equation in the whole space with quadratic potential, rescaled by a factor , i.e., of the form , where is a positive definite matrix. Furthermore, the eigenvalue corresponding to this second term gives a first-order correction to the eigenvalue of the heterogeneous spectral transport problem.
Mots clés : homogenization, localization, transport
@article{COCV_2002__8__1_0, author = {Allaire, Gr\'egoire and Bal, Guillaume and Siess, Vincent}, title = {Homogenization and localization in locally periodic transport}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1--30}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002016}, mrnumber = {1932943}, zbl = {1065.35042}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2002016/} }
TY - JOUR AU - Allaire, Grégoire AU - Bal, Guillaume AU - Siess, Vincent TI - Homogenization and localization in locally periodic transport JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 1 EP - 30 VL - 8 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2002016/ DO - 10.1051/cocv:2002016 LA - en ID - COCV_2002__8__1_0 ER -
%0 Journal Article %A Allaire, Grégoire %A Bal, Guillaume %A Siess, Vincent %T Homogenization and localization in locally periodic transport %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 1-30 %V 8 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2002016/ %R 10.1051/cocv:2002016 %G en %F COCV_2002__8__1_0
Allaire, Grégoire; Bal, Guillaume; Siess, Vincent. Homogenization and localization in locally periodic transport. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 1-30. doi : 10.1051/cocv:2002016. http://archive.numdam.org/articles/10.1051/cocv:2002016/
[1] Homogenization and two scale convergence. SIAM 23 (1992) 1482-1518. | MR | Zbl
,[2] Homogenization of the critically spectral equation in neutron transport. ESAIM: M2AN 33 (1999) 721-746. | Numdam | MR | Zbl
and ,[3] Homogenization of a spectral problem in neutronic multigroup diffusion. Comput. Methods Appl. Mech. Engrg. 187 (2000) 91-117. | MR | Zbl
and ,[4] Uniform spectral asymptotics for singularly perturbed locally periodic operators. Com. Partial Differential Equations 27 (2002) 705-725. | MR | Zbl
and ,[5] Collectively compact operator approximation theory. Prentice-Hall, Englewood Cliffs, NJ (1971). | MR | Zbl
,[6] Couplage d'équations et homogénéisation en transport neutronique, Ph.D. Thesis. Paris 6 (1997).
,[7] , Homogenization of a spectral equation with drift in linear transport. ESAIM: COCV 6 (2001) 613-627. | Numdam | MR | Zbl
[8] Boundary layer and homogenization of transport processes. Publ. RIMS Kyoto Univ. (1979) 53-157. | MR | Zbl
, and ,[9] Homogénéisation des modèles de diffusion en neutronique, Ph.D. Thesis. Paris 6 (1999).
,[10] Spectral approximation of linear operators. Academic Press (1983). | MR | Zbl
,[11] Mathematical analysis and numerical methods for science and technology. Springer Verlag, Berlin (1993). | MR | Zbl
and ,[12] Diffusion limit for nonhomogeneous and non-micro-reversible processes. Indiana Univ. Math. J. 49 (2000) 1175-1198. | MR | Zbl
, and ,[13] Quantum Physics. A Functional Integral Point of View. Springer-Verlag, New York, Berlin (1981). | MR | Zbl
and ,[14] Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 76 (1988) 110-125. | MR | Zbl
, , and ,[15] Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d'un opérateur de transport. C. R. Acad. Sci. Paris (1985) 341-344. | Zbl
, and ,[16] Diffusion approximation in heterogeneous media. Asymptot. Anal. (to appear). | MR | Zbl
and ,[17] Approximation by homogenization and diffusion of kinetic equations. Comm. Partial Differential Equations 26 (2001) 537-569. | MR | Zbl
and ,[18] Reductibility of quasiperiodic differential operators and averaging. Transc. Moscow Math. Soc. 2 (1984) 101-126. | MR | Zbl
,[19] Neutron transport and diffusion in inhomogeneous media (1). J. Math. Phys. (1975) 1421-1427. | MR
,[20] , Neutron transport and diffusion in inhomogeneous media (2). Nuclear Sci. Engrg. (1976) 357-368.
[21] Asymptotic solution of neutron transport problems for small mean free paths. J. Math. Phys. (1974) 75-81. | MR
and ,[22] Les équations de la neutronique, Thèse de Doctorat d'État. Paris XIII (1987).
,[23] Mathematical topics in neutron transport theory. World Scientific Publishing Co. Inc., River Edge, NJ (1997). | Zbl
,[24] Asymptotic behaviour of the ground state of singularly perturbed elliptic equations. Commun. Math. Phys. 197 (1998) 527-551. | MR | Zbl
,[25] Matrix quadratic solutions, J. SIAM Appl. Math. 14 (1966) 496-501. | MR | Zbl
,[26] Mathematics of finite-dimensional control systems, theory and design. Lecture Notes in Pure Appl. Math. 43 (1979). | Zbl
,[27] Study of the corrector of the eigenvalue of a transport operator. SIAM J. Math. Anal. (1985) 151-166. | MR | Zbl
,Cité par Sources :