In this paper, we investigate the problem of fast rotating fluids between two infinite plates with Dirichlet boundary conditions and “turbulent viscosity” for general initial data. We use dispersive effect to prove strong convergence to the solution of the bimensionnal Navier-Stokes equations modified by the Ekman pumping term.
Mots-clés : Navier-Stokes equations, rotating fluids, Strichartz estimates
@article{COCV_2002__8__441_0, author = {Chemin, Jean-Yves and Desjardins, Beno{\^\i}t and Gallagher, Isabelle and Grenier, Emmanuel}, title = {Ekman boundary layers in rotating fluids}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {441--466}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002037}, mrnumber = {1932959}, zbl = {1070.35505}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2002037/} }
TY - JOUR AU - Chemin, Jean-Yves AU - Desjardins, Benoît AU - Gallagher, Isabelle AU - Grenier, Emmanuel TI - Ekman boundary layers in rotating fluids JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 441 EP - 466 VL - 8 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2002037/ DO - 10.1051/cocv:2002037 LA - en ID - COCV_2002__8__441_0 ER -
%0 Journal Article %A Chemin, Jean-Yves %A Desjardins, Benoît %A Gallagher, Isabelle %A Grenier, Emmanuel %T Ekman boundary layers in rotating fluids %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 441-466 %V 8 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2002037/ %R 10.1051/cocv:2002037 %G en %F COCV_2002__8__441_0
Chemin, Jean-Yves; Desjardins, Benoît; Gallagher, Isabelle; Grenier, Emmanuel. Ekman boundary layers in rotating fluids. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 441-466. doi : 10.1051/cocv:2002037. http://archive.numdam.org/articles/10.1051/cocv:2002037/
[1] Global regularity of 3D rotating Navier-Stokes equations for resonant domains. Indiana Univ. Math. J. 48 (1999) 1133-1176. | Zbl
, and ,[2] Global splitting, integrability and regularity of D Euler and Navier-Stokes equations for uniformly rotating fluids. European J. Mech. B Fluids 15 (1996) 291-300. | Zbl
, and ,[3] Fluids with anisotropic viscosity. Modél. Math. Anal. Numér. 34 (2000) 315-335. | Numdam | MR | Zbl
, , and ,[4] Anisotropy and dispersion in rotating fluids. Preprint of Orsay University. | MR
, , and ,[5] Stability of mixed Ekman-Hartmann boundary layers. Nonlinearity 12 (1999) 181-199. | Zbl
, and ,[6] Applications of Schochet's methods to parabolic equations. J. Math. Pures Appl. 77 (1998) 989-1054. | Zbl
,[7] The theory of rotating fluids1980). | MR | Zbl
,[8] Oscillatory perturbations of the Navier-Stokes equations. J. Math. Pures Appl. 76 (1997) 477-498. | Zbl
,[9] Ekman layers of rotating fluids, the case of well prepared initial data. Comm. Partial Differential Equations 22 (1997) 953-975. | MR | Zbl
and ,[10] Ekman layers of rotating fluids: The case of general initial data. Comm. Pure Appl. Math. 53 (2000) 432-483. | MR | Zbl
,[11] Pedlovsky, Geophysical Fluid Dynamics. Springer-Verlag (1979). | Zbl
Cité par Sources :