This article is divided into two chapters. The classical problem of homogenization of elliptic operators with periodically oscillating coefficients is revisited in the first chapter. Following a Fourier approach, we discuss some of the basic issues of the subject: main convergence theorem, Bloch approximation, estimates on second order derivatives, correctors for the medium, and so on. The second chapter is devoted to the discussion of some non-classical behaviour of vibration problems of periodic structures.
Mots clés : homogenization, Bloch waves, correctors, regularity, spectral problems, vibration problems
@article{COCV_2002__8__489_0, author = {Conca, Carlos and Vanninathan, M.}, title = {Fourier approach to homogenization problems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {489--511}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002048}, mrnumber = {1932961}, zbl = {1065.35045}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2002048/} }
TY - JOUR AU - Conca, Carlos AU - Vanninathan, M. TI - Fourier approach to homogenization problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 489 EP - 511 VL - 8 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2002048/ DO - 10.1051/cocv:2002048 LA - en ID - COCV_2002__8__489_0 ER -
%0 Journal Article %A Conca, Carlos %A Vanninathan, M. %T Fourier approach to homogenization problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 489-511 %V 8 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2002048/ %R 10.1051/cocv:2002048 %G en %F COCV_2002__8__489_0
Conca, Carlos; Vanninathan, M. Fourier approach to homogenization problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 489-511. doi : 10.1051/cocv:2002048. http://archive.numdam.org/articles/10.1051/cocv:2002048/
[1] Eigenfrequencies of a tube bundle immersed in a fluid. Appl. Math. Optim. 18 (1988) 1-38. | MR | Zbl
and ,[2] Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. | MR | Zbl
,[3] Bloch-wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl. 77 (1998) 153-208. | MR | Zbl
and ,[4] Boundary layers in the homogenization of a spectral problem in fluid-solid structures. SIAM J. Math. Anal. 29 (1997) 343-379. | MR | Zbl
and ,[5] Bloch wave homogenization for a spectral problem in fluid-solid structures. Arch. Rational Mech. Anal. 135 (1996) 197-257. | MR | Zbl
and ,[6] Analyse asymptotique spectrale de l'équation des ondes. Homogénéisation par ondes de Bloch. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 293-298. | Zbl
and ,[7] Analyse asymptotique spectrale de l'équation des ondes. Complétude du spectre de Bloch. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 557-562. | Zbl
and ,[8] Asymptotic Analysis in Periodic Structures. North-Holland, Amsterdam (1978). | MR | Zbl
, and ,[9] Über die Quantenmechanik der Electronen in Kristallgittern. Z. Phys. 52 (1928) 555-600. | JFM
,[10] Sulla convergenza delle soluzioni di disequazioni variazionali. Ann. Mat. Pura Appl. 4 (1977) 137-159. | MR | Zbl
and ,[11] Une remarque sur l'analyse asymptotique spectrale en homogénéisation. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 1043-1048. | Zbl
and ,[12] Topics in the Mathematical Modelling of Composite Materials. Birkhäuser, Boston (1997). | MR | Zbl
and ,[13] Numerical experiments with the Bloch-Floquet approach in homogenization (to appear). | MR | Zbl
, and ,[14] Bloch Approximation in Homogenization and Applications. SIAM J. Math. Anal. (in press). | MR | Zbl
, and ,[15] Bloch Approximation in bounded domains. Preprint (2002). | MR
, and ,[16] Application of Bloch decomposition in wave propagation problems (in preparation).
, and ,[17] Fluids and Periodic Structures. J. Wiley and Sons/Masson, New York/Paris, Collection RAM 38 (1995). | MR | Zbl
, and ,[18] Limiting behaviour of a spectral problem in fluid-solid structures. Asymp. Anal. 6 (1993) 365-389. | MR | Zbl
, and ,[19] Problèmes Mathématiques en Couplage Fluide-Structure. Applications aux Faisceaux Tubulaires. Eyrolles, Paris (1994). | Zbl
, , and ,[20] Homogenization of periodic structures via Bloch decomposition. SIAM J. Appl. Math. 57 (1997) 1639-1659. | MR | Zbl
and ,[21] On uniform -estimates in periodic homogenization. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 499-517. | MR | Zbl
and ,[22] A spectral problem arising in fluid-solid structures. Comput. Methods Appl. Mech. Engrg. 69 (1988) 215-242. | MR | Zbl
and ,[23] An Introduction to Convergence. Birkhäuser, Boston (1993). | MR | Zbl
,[24] Band-gap structure of spectra of periodic dielectric and accoustic media. I, scalar model. SIAM J. Appl. Math. 56 (1996) 68-88. | MR | Zbl
and ,[25] Sur les équations différentielles linéaires à coefficients périodiques. Ann. École Norm. Sér. 2 12 (1883) 47-89. | JFM | Numdam | MR
,[26] Expansion in series of eigenfunctions of an equation with periodic coefficients. Dokl. Akad. Nauk SSSR 73 (1950) 1117-1120. | MR
,[27] Mesures semi-classiques et ondes de Bloch, in Séminaire Equations aux Dérivées Partielles, Vol. 16, 1990-1991. École Polytechnique, Palaiseau (1991). | Numdam | Zbl
,[28] Microlocal defect measures. Comm. Partial Differential Equation 16 (1991) 1761-1794. | MR | Zbl
,[29] Homogenization limits and Wigner transforms. Comm. Pure. Appl. Math. 50 (1997) 321-377. | MR | Zbl
, , and ,[30] Analysis of Linear Partial Differential Operators III. Springer-Verlag, Berlin (1985). | MR | Zbl
,[31] Homogenization of elliptic eigenvalue problems, I and II. Appl. Math. Optim. 5 (1979) 153-167, 197-216. | MR | Zbl
,[32] Sur les mesures de Wigner. Revista Math. Iberoamer. 9 (1993) 553-618. | MR | Zbl
and ,[33] A Wigner function approach to semiclassical limits: electrons in a periodic potential. J. Math. Phys. 35 (1994) 1066-1094. | MR | Zbl
, and ,[34] An approach for constructing families of homogenized equations for periodic media I and II. SIAM J. Math. Anal. 2 (1991) 1-15, 16-33. | Zbl
and ,[35] Zbl
, (1977-78) -Convergence, Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger, mimeographed notes. English translation: Murat and L. Tartar, -Convergence, in F. Topics in the Mathematical Modelling of Composite Materials, edited by A. Cherkaev and R. Kohn. Birkhäuser Verlag, Boston. Series Progress in Nonlinear Differential Equations and their Applications 31 (1977). |[36] A survey on compensated compactness, in Contributions to Modern Calculus of Variations, edited by L. Cesari, Pitman Res. Notes in Math. Ser. 148 (1987) 145-183. | MR
,[37] A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. | MR | Zbl
,[38] Partial differential equations with periodic coefficients and Bloch waves in crystals. J. Math. Phys. 5 (1964) 1499-1504. | MR | Zbl
and ,[39] On the limiting behaviour of a sequence of operators defined in different Hilbert's spaces. Upsekhi Math. Nauk. 44 (1989) 157-158. | Zbl
, and ,[40] Global behaviour of large elastic tube-bundles immersed in a fluid. Comput. Mech. 2 (1987) 105-118. | Zbl
,[41] Eigenfrequencies of a tube-bundle placed in a confined fluid. Comput. Methods Appl. Mech. Engrg. 30 (1982) 75-93. | MR | Zbl
,[42] Methods of Modern Mathematical Physics. I. Functional Analysis, II. Fourier Analysis and Self-Adjointness, III. Scattering Theory, IV. Analysis of Operators. Academic Press, New York (1972-78). | MR | Zbl
and ,[43] Non-Homogeneous Media and Vibration Theory. Springer-Verlag, Berlin. Lecture Notes in Phys. 127 (1980). | Zbl
,[44] Vibration and Coupling of Continuous Systems. Asymptotic Methods. Springer-Verlag, Berlin (1989). | Zbl
and ,[45] A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math. 51 (1991) 984-1005. | MR | Zbl
and ,[46] -measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 193-230. | MR | Zbl
,[47] Problèmes d'Homogénéisation dans les Equations aux Dérivées Partielles, Cours Peccot au Collège de France (1977). Partially written in F. Murat [25].
,[48] Homogenization and eigenvalue problems in perforated domains. Proc. Indian Acad. Sci. Math. Sci. 90 (1981) 239-271. | MR | Zbl
,[49] Theory of Bloch waves. J. Anal. Math. 33 (1978) 146-167. | MR | Zbl
,Cité par Sources :