Some regularity results for minimal crystals
ESAIM: Control, Optimisation and Calculus of Variations, Volume 8  (2002), p. 69-103

We introduce an intrinsic notion of perimeter for subsets of a general Minkowski space (i.e. a finite dimensional Banach space in which the norm is not required to be even). We prove that this notion of perimeter is equivalent to the usual definition of surface energy for crystals and we study the regularity properties of the minimizers and the quasi-minimizers of perimeter. In the two-dimensional case we obtain optimal regularity results: apart from a singular set (which is 1 -negligible and is empty when the unit ball is neither a triangle nor a quadrilateral), we find that quasi-minimizers can be locally parameterized by means of a bi-lipschitz curve, while sets with prescribed bounded curvature are, locally, lipschitz graphs.

DOI : https://doi.org/10.1051/cocv:2002018
Classification:  49J45,  49Q20
Keywords: quasi-minimal sets, Wulff shape, crystalline norm
@article{COCV_2002__8__69_0,
     author = {Ambrosio, Luigi and Novaga, M. and Paolini, E.},
     title = {Some regularity results for minimal crystals},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {8},
     year = {2002},
     pages = {69-103},
     doi = {10.1051/cocv:2002018},
     zbl = {1066.49021},
     mrnumber = {1932945},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2002__8__69_0}
}
Ambrosio, L.; Novaga, M.; Paolini, E. Some regularity results for minimal crystals. ESAIM: Control, Optimisation and Calculus of Variations, Volume 8 (2002) , pp. 69-103. doi : 10.1051/cocv:2002018. http://www.numdam.org/item/COCV_2002__8__69_0/

[1] F.J. Almgren, Optimal isoperimetric inequalities. Indiana U. Math. J. 35 (1986) 451-547. | MR 855173 | Zbl 0585.49030

[2] F.J. Almgren and J. Taylor, Flat flow is motion by crystalline curvature for curves with crystalline energies. J. Diff. Geom. 42 (1995) 1-22. | MR 1350693 | Zbl 0867.58020

[3] F.J. Almgren, J. Taylor and L. Wang, Curvature-driven flows: A variational approach. SIAM J. Control Optim. 31 (1993) 387-437. | MR 1205983 | Zbl 0783.35002

[4] M. Amar and G. Bellettini, A notion of total variation depending on a metric with discontinuous coefficients. Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 91-133. | Numdam | MR 1259102 | Zbl 0842.49016

[5] L. Ambrosio, Corso introduttivo alla Teoria Geometrica della Misura ed alle Superfici Minime. Scuola Normale Superiore of Pisa (1997). | MR 1736268 | Zbl 0977.49028

[6] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford U. P. (2000). | MR 1857292 | Zbl 0957.49001

[7] L. Ambrosio, V. Caselles, S. Masnou and J.M. Morel, Connected Components of Sets of Finite Perimeter and Applications to Image Processing. J. EMS 3 (2001) 213-266. | MR 1812124 | Zbl 0981.49024

[8] L. Ambrosio and E. Paolini, Partial regularity for the quasi minimizers of perimeter. Ricerche Mat. XLVIII (1999) 167-186. | MR 1765683 | Zbl 0943.49032

[9] G. Bellettini, M. Paolini and S. Venturini, Some results on surface measures in Calculus of Variations. Ann. Mat. Pura Appl. 170 (1996) 329-359. | MR 1441625 | Zbl 0890.49020

[10] E. Bombieri, Regularity theory for almost minimal currents. Arch. Rational Mech. Anal. 78 (1982) 99-130. | MR 648941 | Zbl 0485.49024

[11] H. Brezis, Opérateurs Maximaux Monotones. North Holland, Amsterdam (1973).

[12] Y.D. Burago and V.A. Zalgaller, Geometric inequalities. Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften XIV (1988). | MR 936419 | Zbl 0633.53002

[13] G. David and S. Semmes, Uniform rectifiability and quasiminimizing sets of arbitrary codimension. Mem. Amer. Math. Soc. 687 (2000). | MR 1683164 | Zbl 0966.49024

[14] E. De Giorgi, Nuovi teoremi relativi alle misure (r-1)-dimensionali in uno spazio a r dimensioni. Ricerche Mat. 4 (1955) 95-113. | MR 74499 | Zbl 0066.29903

[15] H. Federer, A note on the Gauss-Green theorem. Proc. Amer. Math. Soc. 9 (1958) 447-451. | Zbl 0087.27302

[16] H. Federer, Geometric Measure Theory. Springer-Verlag, Berlin (1969). | Zbl 0176.00801

[17] W.H. Fleming, Functions with generalized gradient and generalized surfaces. Ann. Mat. 44 (1957) 93-103. | MR 95923 | Zbl 0082.26701

[18] I. Fonseca, The Wulff theorem revisited. Proc. Roy. Soc. London 432 (1991) 125-145. | MR 1116536 | Zbl 0725.49017

[19] I. Fonseca and S. Müller, A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinburgh 119 (1991) 125-136. | MR 1130601 | Zbl 0752.49019

[20] E. Giusti, Minimal surfaces and functions of bounded variation. Birkhäuser, Boston-Basel-Stuttgart, Monogr. in Math. 80 (1984) XII. | MR 775682 | Zbl 0545.49018

[21] B. Kirchheim, Rectifiable metric spaces: Local structure and regularity of the Hausdorff measure. Proc. AMS 121 (1994) 113-123. | MR 1189747 | Zbl 0806.28004

[22] S. Luckhaus and L. Modica, The Gibbs-Thompson relation within the gradient theory of phase transitions. Arch. Rational Mech. Anal. 107 (1989) 71-83. | Zbl 0681.49012

[23] F. Morgan, The cone over the Clifford torus in 4 is Φ-minimizing. Math. Ann. 289 (1991) 341-354. | MR 1092180 | Zbl 0725.49013

[24] F. Morgan, C. French and S. Greenleaf, Wulff clusters in R 2 . J. Geom. Anal. 8 (1998) 97-115. | MR 1704570 | Zbl 0934.49024

[25] A.P. Morse, Perfect blankets. Trans. Amer. Math. Soc. 61 (1947) 418-442. | MR 20618 | Zbl 0031.38702

[26] J. Taylor, Crystalline variational problems. Bull. Amer. Math. Soc. (N.S.) 84 (1978) 568-588. | MR 493671 | Zbl 0392.49022

[27] J. Taylor, Motion of curves by crystalline curvature, including triple junctions and boundary points. Differential Geometry, Proc. Symp. Pure Math. 54 (1993) 417-438. | MR 1216599 | Zbl 0823.49028

[28] J. Taylor, Unique structure of solutions to a class of nonelliptic variational problems. Proc. Symp. Pure Math. 27 (1975) 419-427. | MR 388225 | Zbl 0317.49054

[29] J. Taylor and J.W. Cahn, Catalog of saddle shaped surfaces in crystals. Acta Metall. 34 (1986) 1-12.