Control of transonic shock positions
ESAIM: Control, Optimisation and Calculus of Variations, Volume 8  (2002), p. 907-914

We wish to show how the shock position in a nozzle could be controlled. Optimal control theory and algorithm is applied to the transonic equation. The difficulty is that the derivative with respect to the shock position involves a Dirac mass. The one dimensional case is solved, the two dimensional one is analyzed .

DOI : https://doi.org/10.1051/cocv:2002034
Classification:  35,  65,  76,  93
Keywords: partial differential equations, control, calculus of variation, nozzle flow, sensitivity, transonic equation
@article{COCV_2002__8__907_0,
     author = {Pironneau, Olivier},
     title = {Control of transonic shock positions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {8},
     year = {2002},
     pages = {907-914},
     doi = {10.1051/cocv:2002034},
     zbl = {1069.35043},
     mrnumber = {1932979},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2002__8__907_0}
}
Pironneau, Olivier. Control of transonic shock positions. ESAIM: Control, Optimisation and Calculus of Variations, Volume 8 (2002) , pp. 907-914. doi : 10.1051/cocv:2002034. http://www.numdam.org/item/COCV_2002__8__907_0/

[1] F. Hecht, H. Kawarada, C. Bernardi, V. Girault and O. Pironneau, A finite element problem issued from fictitious domain techniques. East-West J. Appl. Math. (2002). | MR 1879473 | Zbl 1002.65127

[2] M. Olazabal, E. Godlewski and P.A. Raviart, On the linearization of hyperbolic systems of conservation laws. Application to stability, in Équations aux dérivées partielles et applications. Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris (1998) 549-570. | MR 1648240 | Zbl 0912.35103

[3] J. Nečas, Écoulements de fluide : compacité par entropie. Masson, Paris (1989). | MR 1269784 | Zbl 0717.76002

[4] L. Landau and F. Lifschitz, Fluid mechanics. MIR Editions, Moscow (1956).

[5] M.A. Giles and N.A. Pierce, Analytic adjoint solutions for the quasi-one-dimensional euler equations. J. Fluid Mech. 426 (2001) 327-345. | MR 1819479 | Zbl 0967.76079

[6] B. Mohammadi, Contrôle d'instationnarités en couplage fluide-structure. C. R. Acad. Sci. Sér. IIb Phys. Mécanique, astronomie 327 (1999) 115-118. | Zbl 0972.76088

[7] N. Di Cesare and O. Pironneau, Shock sensitivity analysis. Comput. Fluid Dynam. J. 9 (2000) 1-15.

[8] R. Glowinski, Numerical methods for nonlinear variational problems. Springer-Verlag, New York (1984). | MR 737005 | Zbl 0536.65054