In this paper we discuss the approximate reconstruction of inhomogeneities of small volume. The data used for the reconstruction consist of boundary integrals of the (observed) electromagnetic fields. The numerical algorithms discussed are based on highly accurate asymptotic formulae for the electromagnetic fields in the presence of small volume inhomogeneities.
Mots-clés : electromagnetic imaging, small inhomogeneities, numerical reconstruction algorithms
@article{COCV_2003__9__49_0, author = {Ammari, Habib and Moskow, Shari and Vogelius, Michael S.}, title = {Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {49--66}, publisher = {EDP-Sciences}, volume = {9}, year = {2003}, doi = {10.1051/cocv:2002071}, mrnumber = {1957090}, zbl = {1075.78010}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2002071/} }
TY - JOUR AU - Ammari, Habib AU - Moskow, Shari AU - Vogelius, Michael S. TI - Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 49 EP - 66 VL - 9 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2002071/ DO - 10.1051/cocv:2002071 LA - en ID - COCV_2003__9__49_0 ER -
%0 Journal Article %A Ammari, Habib %A Moskow, Shari %A Vogelius, Michael S. %T Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume %J ESAIM: Control, Optimisation and Calculus of Variations %D 2003 %P 49-66 %V 9 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2002071/ %R 10.1051/cocv:2002071 %G en %F COCV_2003__9__49_0
Ammari, Habib; Moskow, Shari; Vogelius, Michael S. Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 49-66. doi : 10.1051/cocv:2002071. http://archive.numdam.org/articles/10.1051/cocv:2002071/
[1] Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell Equations. J. Math. Pures Appl. 80 (2001) 769-814. | MR | Zbl
, and ,[2] Identification of planar cracks by complete overdetermined data: Inversion formulae. Inverse Problems 12 (1996) 553-563. | MR | Zbl
and ,[3] On the inverse emerging plane crack problem. Math. Meth. Appl. Sci. 21 (1998) 895-907. | MR | Zbl
, and ,[4] Diffraction acoustique inverse de fissure plane : solution explicite pour un solide borné. C. R. Acad. Sci. Paris Sér. II 327 (1999) 971-976. | Zbl
, and ,[5] Asymptotic formuli for steady state voltage potentials in the presence of conductivity imperfection of small area. ZAMP 52 (2001) 543-572. | MR | Zbl
, and ,[6] A direct impedance tomography algorithm for locating small inhomogeneities. Preprint (2001). | MR | Zbl
, and ,[7] On an inverse boundary value problem, in Seminar on Numerical Analysis and its Applications to Continuum Physics. Soc. Brasileira de Matemática, Rio de Janeiro (1980) 65-73. | MR
,[8] Identification of conductivity inperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Problems 14 (1998) 553-595. | Zbl
, and ,[9] Ten Lectures on Wavelets. SIAM, Philadelphia (1992). | MR | Zbl
,[10] Introduction to Partial Differential Equations. Princeton University Press, Princeton (1976). | MR | Zbl
,[11] Identification of Small Inhomogeneities of Extreme Conductivity by Boundary Measurements: A Theorem on Continuous Dependence. Arch. Rational Mech. Anal. 105 (1989) 299-326. | MR | Zbl
and ,[12] Identification of small flaws in conductors using magnetostatic measurements. Math. Comput. Simul. 50 (1999) 457-471. | MR
and ,[13] Total determination of material parameters from electromagnetic boundary information. Pacific J. Math. (to appear). | MR | Zbl
and ,[14] Stabilized numerical analytic prolongation with poles. SIAM J. Appl. Math. 18 (1970) 346-363. | MR | Zbl
,[15] An inverse boundary value problem in electrodynamics. Duke Math. J. 70 (1993) 617-653. | MR | Zbl
, and ,[16] Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter 34 (2000) 723-748. | Numdam | MR | Zbl
and ,[17] An inverse problem for the time harmonic Maxwell Equations, Ph.D. Thesis. Rutgers University (2001).
,Cité par Sources :