On the Paneitz energy on standard three sphere
ESAIM: Control, Optimisation and Calculus of Variations, Volume 10 (2004) no. 2, p. 211-223

We prove that the Paneitz energy on the standard three-sphere S 3 is bounded from below and extremal metrics must be conformally equivalent to the standard metric.

DOI : https://doi.org/10.1051/cocv:2004002
Classification:  58E11,  35G99
Keywords: Paneitz operator, symmetrization, extremal metric
@article{COCV_2004__10_2_211_0,
     author = {Yang, Paul and Zhu, Meijun},
     title = {On the Paneitz energy on standard three sphere},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {10},
     number = {2},
     year = {2004},
     pages = {211-223},
     doi = {10.1051/cocv:2004002},
     zbl = {1072.58026},
     mrnumber = {2083484},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2004__10_2_211_0}
}
Yang, Paul; Zhu, Meijun. On the Paneitz energy on standard three sphere. ESAIM: Control, Optimisation and Calculus of Variations, Volume 10 (2004) no. 2, pp. 211-223. doi : 10.1051/cocv:2004002. http://www.numdam.org/item/COCV_2004__10_2_211_0/

[1] A. Jun, C. Kai-Seng and W. Juncheng, Self-similar solutions for the anisotropic affine curve shortening problem. Calc. Var. Partial Differ. Equ. 13 (2001) 311-337. | MR 1865001 | Zbl 1086.35035

[2] T. Branson, Differential operators canonically associated to a conformal structure. Math. Scand. 57 (1985) 293-345. | MR 832360 | Zbl 0596.53009

[3] Y.S. Choi and X. Xu, Nonlinear biharmonic equation with negative exponent. Preprint (1999).

[4] Z. Djadli, E. Hebey and M. Ledoux, Paneitz type operators and applications. Duke Math. J. 104 (2000) 129-169. | MR 1769728 | Zbl 0998.58009

[5] C. Fefferman and R. Graham, Conformal Invariants, in Élie Cartan et les Mathématiques d'aujourd'hui, Asterisque (1985) 95-116. | Zbl 0602.53007

[6] E. Hebey and F. Robert, Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients. Calc. Var. Partial Differ. Equ. 13 (2001) 491-517. | Zbl 0998.58007

[7] E. Hebey, Sharp Sobolev inequalities of second order. J. Geom. Anal. 13 (2003) 145-162. | MR 1967041 | Zbl 1032.58008

[8] S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds. Preprint (1983). | Zbl pre05309256

[9] G. Talenti, Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1976) 697-718. | Numdam | MR 601601 | Zbl 0341.35031

[10] J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations. Math. Ann. 313 (1999) 207-228. | MR 1679783 | Zbl 0940.35082

[11] X. Xu and P. Yang, On a fourth order equation in 3-D, A tribute to J.L. Lions. ESAIM: COCV 8 (2002) 1029-1042. | Numdam | MR 1932985 | Zbl 1071.53526