We consider an Hamilton-Jacobi equation of the form
Mots-clés : viscosity solution, lax formula, Finsler metric
@article{COCV_2005__11_2_229_0, author = {Briani, Ariela and Davini, Andrea}, title = {Monge solutions for discontinuous hamiltonians}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {229--251}, publisher = {EDP-Sciences}, volume = {11}, number = {2}, year = {2005}, doi = {10.1051/cocv:2005004}, mrnumber = {2141888}, zbl = {1087.35023}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2005004/} }
TY - JOUR AU - Briani, Ariela AU - Davini, Andrea TI - Monge solutions for discontinuous hamiltonians JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2005 SP - 229 EP - 251 VL - 11 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2005004/ DO - 10.1051/cocv:2005004 LA - en ID - COCV_2005__11_2_229_0 ER -
%0 Journal Article %A Briani, Ariela %A Davini, Andrea %T Monge solutions for discontinuous hamiltonians %J ESAIM: Control, Optimisation and Calculus of Variations %D 2005 %P 229-251 %V 11 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2005004/ %R 10.1051/cocv:2005004 %G en %F COCV_2005__11_2_229_0
Briani, Ariela; Davini, Andrea. Monge solutions for discontinuous hamiltonians. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 2, pp. 229-251. doi : 10.1051/cocv:2005004. https://www.numdam.org/articles/10.1051/cocv:2005004/
[1] Selected topics on “Analysis on Metric spaces”. Scuola Normale Superiore di Pisa (2000). | Zbl
and ,[2] Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Syst. Control Found. Appl. (1997). | MR | Zbl
and ,[3] Solutions de viscosité des équations de Hamilton-Jacobi. Math. Appl. 17 (1994). | MR | Zbl
,[4] Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians. Comm. Partial Diff. Equ. 15 (1990) 1713-1742. | Zbl
and ,[5] Semicontinuity, relaxation and integral representation in the calculus of variations. Pitman Res. Notes Math. Ser. 207 (1989). | MR | Zbl
,[6] Topological equivalence of some variational problems involving distances. Discrete Contin. Dyn. Syst. 7 (2001) 247-258. | Zbl
, and ,[7] On viscosity solutions of fully nonlinear equations with measurable ingredients. Comm. Pure Appl. Math. 49 (1996) 365-397. | Zbl
, , and ,[8] Hamilton-Jacobi equations with measurable dependence on the state variable. Adv. Differ. Equ. 8 (2003) 733-768. | Zbl
and ,[9] Optimization and Nonsmooth Analysis. John Wiley & Sons, New York (1983). | MR | Zbl
,[10] On the relaxation of a class of functionals defined on Riemannian distances. J. Convex Anal., to appear. | MR | Zbl
,[11] Smooth approximation of weak Finsler metrics. Adv. Differ. Equ., to appear. | MR
,[12] Length of curves on LIP manifolds. Rend. Accad. Naz. Lincei, Ser. 9 1 (1990) 215-221. | Zbl
and ,[13] Integral distance on a Lipschitz Riemannian Manifold. Math. Z. 207 (1991) 223-243. | Zbl
and ,[14] Distanza intrinseca su una varietà finsleriana di Lipschitz. Rend. Accad. Naz. Sci. V, XVII, XL, Mem. Mat. 1 (1993) 129-151. | Zbl
and ,[15] LIP manifolds: from metric to Finslerian structure. Math. Z. 218 (1995) 223-237. | EuDML | MR | Zbl
and ,[16] A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations. Ann. Sc. Norm. Sup. Pisa 16 (1989) 105-135. | EuDML | Numdam | MR | Zbl
,[17] Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets. Bull. Facul. Sci. & Eng., Chuo Univ., Ser I 28 (1985) 33-77. | MR | Zbl
,[18] Generalized solutions of Hamilton Jacobi equations. Pitman (Advanced Publishing Program). Res. Notes Math. 69 (1982). | MR | Zbl
,[19] Eikonal equations with discontinuities. Differ. Integral Equ. 8 (1995) 1947-1960. | MR | Zbl
and ,[20] Boundary value problems for Hamilton-Jacobi equations with discontinuous Lagrangian. Indiana Univ. Math. J. 51 (2002) 451-477. | MR | Zbl
,- Variational problems concerning length distances in metric spaces, Journal of Mathematical Analysis and Applications, Volume 538 (2024) no. 1, p. 128337 | DOI:10.1016/j.jmaa.2024.128337
- Monge solutions for discontinuous Hamilton-Jacobi equations in Carnot groups, Nonlinear Differential Equations and Applications NoDEA, Volume 31 (2024) no. 5 | DOI:10.1007/s00030-024-00983-y
- Principal eigenvalue problem for infinity Laplacian in metric spaces, Advanced Nonlinear Studies, Volume 22 (2022) no. 1, p. 548 | DOI:10.1515/ans-2022-0028
- Equivalence of solutions of eikonal equation in metric spaces, Journal of Differential Equations, Volume 272 (2021), p. 979 | DOI:10.1016/j.jde.2020.10.018
- Intrinsic geometry and analysis of Finsler structures, Annali di Matematica Pura ed Applicata (1923 -), Volume 196 (2017) no. 5, p. 1685 | DOI:10.1007/s10231-017-0634-7
- A nonlinear parabolic equation with discontinuity in the highest order and applications, Journal of Differential Equations, Volume 260 (2016) no. 2, p. 1200 | DOI:10.1016/j.jde.2015.09.022
- Transmission conditions on interfaces for Hamilton–Jacobi–Bellman equations, Journal of Differential Equations, Volume 257 (2014) no. 11, p. 3978 | DOI:10.1016/j.jde.2014.07.015
- The Mather problem for lower semicontinuous Lagrangians, Nonlinear Differential Equations and Applications NoDEA, Volume 21 (2014) no. 2, p. 167 | DOI:10.1007/s00030-013-0243-0
- Hamilton-Jacobi Equations with Discontinuous Source Terms, Communications in Partial Differential Equations, Volume 38 (2013) no. 2, p. 199 | DOI:10.1080/03605302.2012.739671
- A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM: Control, Optimisation and Calculus of Variations, Volume 19 (2013) no. 1, p. 129 | DOI:10.1051/cocv/2012002
- A metric proof of the converse Lyapunov theorem for semicontinuous multivalued dynamics, Discrete and Continuous Dynamical Systems, Volume 32 (2012) no. 12, p. 4409 | DOI:10.3934/dcds.2012.32.4409
- Homogenization of two-phase metrics and applications, Journal d'Analyse Mathématique, Volume 103 (2007) no. 1, p. 157 | DOI:10.1007/s11854-008-0005-9
- Bolza Problems with Discontinuous Lagrangians and Lipschitz-Continuity of the Value Function, SIAM Journal on Control and Optimization, Volume 46 (2007) no. 5, p. 1897 | DOI:10.1137/060654311
- From 1-homogeneous supremal functionals to difference quotients: relaxation and Γ-convergence, Calculus of Variations and Partial Differential Equations, Volume 27 (2006) no. 4, p. 397 | DOI:10.1007/s00526-005-0354-5
Cité par 14 documents. Sources : Crossref