Monge solutions for discontinuous hamiltonians
ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 2, pp. 229-251.

We consider an Hamilton-Jacobi equation of the form

H(x,Du)=0xΩN,(1)
where H(x,p) is assumed Borel measurable and quasi-convex in p. The notion of Monge solution, introduced by Newcomb and Su, is adapted to this setting making use of suitable metric devices. We establish the comparison principle for Monge sub and supersolution, existence and uniqueness for equation (1) coupled with Dirichlet boundary conditions, and a stability result. The relation among Monge and Lipschitz subsolutions is also discussed.

DOI : 10.1051/cocv:2005004
Classification : 49J25, 35C15, 35R05
Mots-clés : viscosity solution, lax formula, Finsler metric
@article{COCV_2005__11_2_229_0,
     author = {Briani, Ariela and Davini, Andrea},
     title = {Monge solutions for discontinuous hamiltonians},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {229--251},
     publisher = {EDP-Sciences},
     volume = {11},
     number = {2},
     year = {2005},
     doi = {10.1051/cocv:2005004},
     mrnumber = {2141888},
     zbl = {1087.35023},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv:2005004/}
}
TY  - JOUR
AU  - Briani, Ariela
AU  - Davini, Andrea
TI  - Monge solutions for discontinuous hamiltonians
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2005
SP  - 229
EP  - 251
VL  - 11
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv:2005004/
DO  - 10.1051/cocv:2005004
LA  - en
ID  - COCV_2005__11_2_229_0
ER  - 
%0 Journal Article
%A Briani, Ariela
%A Davini, Andrea
%T Monge solutions for discontinuous hamiltonians
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2005
%P 229-251
%V 11
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv:2005004/
%R 10.1051/cocv:2005004
%G en
%F COCV_2005__11_2_229_0
Briani, Ariela; Davini, Andrea. Monge solutions for discontinuous hamiltonians. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 2, pp. 229-251. doi : 10.1051/cocv:2005004. https://www.numdam.org/articles/10.1051/cocv:2005004/

[1] L. Ambrosio and P. Tilli, Selected topics on “Analysis on Metric spaces”. Scuola Normale Superiore di Pisa (2000). | Zbl

[2] M. Bardi and I. Capuzzo Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Syst. Control Found. Appl. (1997). | MR | Zbl

[3] G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi. Math. Appl. 17 (1994). | MR | Zbl

[4] E.N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians. Comm. Partial Diff. Equ. 15 (1990) 1713-1742. | Zbl

[5] G. Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations. Pitman Res. Notes Math. Ser. 207 (1989). | MR | Zbl

[6] G. Buttazzo, L. De Pascale and I. Fragalà, Topological equivalence of some variational problems involving distances. Discrete Contin. Dyn. Syst. 7 (2001) 247-258. | Zbl

[7] L. Caffarelli, M.G. Crandall, M. Kocan and A. Swiech, On viscosity solutions of fully nonlinear equations with measurable ingredients. Comm. Pure Appl. Math. 49 (1996) 365-397. | Zbl

[8] F. Camilli and A. Siconolfi, Hamilton-Jacobi equations with measurable dependence on the state variable. Adv. Differ. Equ. 8 (2003) 733-768. | Zbl

[9] F.H. Clarke, Optimization and Nonsmooth Analysis. John Wiley & Sons, New York (1983). | MR | Zbl

[10] A. Davini, On the relaxation of a class of functionals defined on Riemannian distances. J. Convex Anal., to appear. | MR | Zbl

[11] A. Davini, Smooth approximation of weak Finsler metrics. Adv. Differ. Equ., to appear. | MR

[12] G. De Cecco and G. Palmieri, Length of curves on LIP manifolds. Rend. Accad. Naz. Lincei, Ser. 9 1 (1990) 215-221. | Zbl

[13] G. De Cecco and G. Palmieri, Integral distance on a Lipschitz Riemannian Manifold. Math. Z. 207 (1991) 223-243. | Zbl

[14] G. De Cecco and G. Palmieri, Distanza intrinseca su una varietà finsleriana di Lipschitz. Rend. Accad. Naz. Sci. V, XVII, XL, Mem. Mat. 1 (1993) 129-151. | Zbl

[15] G. De Cecco and G. Palmieri, LIP manifolds: from metric to Finslerian structure. Math. Z. 218 (1995) 223-237. | EuDML | MR | Zbl

[16] H. Ishii, A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations. Ann. Sc. Norm. Sup. Pisa 16 (1989) 105-135. | EuDML | Numdam | MR | Zbl

[17] H. Ishii, Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets. Bull. Facul. Sci. & Eng., Chuo Univ., Ser I 28 (1985) 33-77. | MR | Zbl

[18] P.L. Lions, Generalized solutions of Hamilton Jacobi equations. Pitman (Advanced Publishing Program). Res. Notes Math. 69 (1982). | MR | Zbl

[19] R.T. Newcomb Ii and J. Su, Eikonal equations with discontinuities. Differ. Integral Equ. 8 (1995) 1947-1960. | MR | Zbl

[20] P. Soravia, Boundary value problems for Hamilton-Jacobi equations with discontinuous Lagrangian. Indiana Univ. Math. J. 51 (2002) 451-477. | MR | Zbl

  • Essebei, Fares; Pasqualetto, Enrico Variational problems concerning length distances in metric spaces, Journal of Mathematical Analysis and Applications, Volume 538 (2024) no. 1, p. 128337 | DOI:10.1016/j.jmaa.2024.128337
  • Essebei, Fares; Giovannardi, Gianmarco; Verzellesi, Simone Monge solutions for discontinuous Hamilton-Jacobi equations in Carnot groups, Nonlinear Differential Equations and Applications NoDEA, Volume 31 (2024) no. 5 | DOI:10.1007/s00030-024-00983-y
  • Liu, Qing; Mitsuishi, Ayato Principal eigenvalue problem for infinity Laplacian in metric spaces, Advanced Nonlinear Studies, Volume 22 (2022) no. 1, p. 548 | DOI:10.1515/ans-2022-0028
  • Liu, Qing; Shanmugalingam, Nageswari; Zhou, Xiaodan Equivalence of solutions of eikonal equation in metric spaces, Journal of Differential Equations, Volume 272 (2021), p. 979 | DOI:10.1016/j.jde.2020.10.018
  • Guo, Chang-Yu Intrinsic geometry and analysis of Finsler structures, Annali di Matematica Pura ed Applicata (1923 -), Volume 196 (2017) no. 5, p. 1685 | DOI:10.1007/s10231-017-0634-7
  • Chen, Robin Ming; Liu, Qing A nonlinear parabolic equation with discontinuity in the highest order and applications, Journal of Differential Equations, Volume 260 (2016) no. 2, p. 1200 | DOI:10.1016/j.jde.2015.09.022
  • Rao, Z.; Siconolfi, A.; Zidani, H. Transmission conditions on interfaces for Hamilton–Jacobi–Bellman equations, Journal of Differential Equations, Volume 257 (2014) no. 11, p. 3978 | DOI:10.1016/j.jde.2014.07.015
  • Gomes, Diogo A.; Terrone, Gabriele The Mather problem for lower semicontinuous Lagrangians, Nonlinear Differential Equations and Applications NoDEA, Volume 21 (2014) no. 2, p. 167 | DOI:10.1007/s00030-013-0243-0
  • Giga, Yoshikazu; Hamamuki, Nao Hamilton-Jacobi Equations with Discontinuous Source Terms, Communications in Partial Differential Equations, Volume 38 (2013) no. 2, p. 199 | DOI:10.1080/03605302.2012.739671
  • Imbert, Cyril; Monneau, Régis; Zidani, Hasnaa A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM: Control, Optimisation and Calculus of Variations, Volume 19 (2013) no. 1, p. 129 | DOI:10.1051/cocv/2012002
  • Terrone, Gabriele; Siconolfi, Antonio A metric proof of the converse Lyapunov theorem for semicontinuous multivalued dynamics, Discrete and Continuous Dynamical Systems, Volume 32 (2012) no. 12, p. 4409 | DOI:10.3934/dcds.2012.32.4409
  • Davini, Andrea; Ponsiglione, Marcello Homogenization of two-phase metrics and applications, Journal d'Analyse Mathématique, Volume 103 (2007) no. 1, p. 157 | DOI:10.1007/s11854-008-0005-9
  • Davini, Andrea Bolza Problems with Discontinuous Lagrangians and Lipschitz-Continuity of the Value Function, SIAM Journal on Control and Optimization, Volume 46 (2007) no. 5, p. 1897 | DOI:10.1137/060654311
  • Garroni, Adriana; Ponsiglione, Marcello; Prinari, Francesca From 1-homogeneous supremal functionals to difference quotients: relaxation and Γ-convergence, Calculus of Variations and Partial Differential Equations, Volume 27 (2006) no. 4, p. 397 | DOI:10.1007/s00526-005-0354-5

Cité par 14 documents. Sources : Crossref