Inégalités variationnelles non convexes
ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 4, pp. 574-594.

Dans cet article nous proposons différents algorithmes pour résoudre une nouvelle classe de problèmes variationels non convexes. Cette classe généralise plusieurs types d'inégalités variationnelles (Cho et al. (2000), Noor (1992), Zeng (1998), Stampacchia (1964)) du cas convexe au cas non convexe. La sensibilité de cette classe de problèmes variationnels non convexes a été aussi étudiée.

In this paper we propose several algorithms of the projection type to solve a new class of nonconvex variational problems. This class generalizes many types of variational inequalities (Cho et al. (2000), Noor (1992), Zeng (1998), Stampacchia (1964)) from the convex case to the nonconvex case. The sensitivity of this class of nonconvex variational problems is also studied.

DOI : 10.1051/cocv:2005019
Classification : 58E35, 49J40, 49J53, 49J52
Mots-clés : ensembles uniformément réguliers, problèmes variationnels non convexes
@article{COCV_2005__11_4_574_0,
     author = {Bounkhel, Messaoud and Bounkhel, Djalel},
     title = {In\'egalit\'es variationnelles non convexes},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {574--594},
     publisher = {EDP-Sciences},
     volume = {11},
     number = {4},
     year = {2005},
     doi = {10.1051/cocv:2005019},
     mrnumber = {2167875},
     zbl = {1085.49007},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.1051/cocv:2005019/}
}
TY  - JOUR
AU  - Bounkhel, Messaoud
AU  - Bounkhel, Djalel
TI  - Inégalités variationnelles non convexes
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2005
SP  - 574
EP  - 594
VL  - 11
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv:2005019/
DO  - 10.1051/cocv:2005019
LA  - fr
ID  - COCV_2005__11_4_574_0
ER  - 
%0 Journal Article
%A Bounkhel, Messaoud
%A Bounkhel, Djalel
%T Inégalités variationnelles non convexes
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2005
%P 574-594
%V 11
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv:2005019/
%R 10.1051/cocv:2005019
%G fr
%F COCV_2005__11_4_574_0
Bounkhel, Messaoud; Bounkhel, Djalel. Inégalités variationnelles non convexes. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 4, pp. 574-594. doi : 10.1051/cocv:2005019. http://archive.numdam.org/articles/10.1051/cocv:2005019/

[1] M. Bounkhel, L. Tadj and A. Hamdi, Iterative Schemes to Solve Non convex Variational Problems. J. Ineq. Pure Appl. Math. 4 (2003), Article 14. | MR | Zbl

[2] M. Bounkhel and L. Thibault, On various notions of regularity of sets in non smooth analysis. Nonlinear Anal. Theory Methods Appl. 48 (2002) 223-246. | Zbl

[3] M. Bounkhel and L. Thibault, Further characterizations of regular sets in Hilbert spaces and their applications to nonconvex sweeping process. Preprint, Centro de Modelamiento Matematico (CMM), Universidad de Chile (2000). Submitted to J. Nonlinear Convex Anal. | MR

[4] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions. Lect. Notes Math. 580 (1977). | MR | Zbl

[5] Y.J. Cho, Z. He, Y.F. Cao and N.J. Huang, On the generalized strongly nonlinear implicit quasivariational inequalities for set-valued mappings. J. Ineq. Pure Appl. Math. 1 (2000), Article 15. | MR | Zbl

[6] F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983). | MR | Zbl

[7] F.H. Clarke, R.J. Stern and P.R. Wolenski, Proximal smoothness and the lower C 2 -property. J. Convex Anal. 2 (1995) 117-144. | Zbl

[8] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer-Verlag, New York (1998). | MR | Zbl

[9] M.A. Noor, General algorithm for variational inequalities. J. Optim. Theory Appl. 73 (1992) 409-413. | Zbl

[10] P.D. Panagiotopoulos and G.E. Stavroulakis, New types of variational principles based on the notion of quasidifferentiability. Acta Mech. 94 (1992) 171-194. | Zbl

[11] R.A. Poliquin, R.T. Rockafellar and L. Thibault, Local differentiability of distance functions. Trans. Amer. Math. Soc. 352 (2000) 5231-5249. | Zbl

[12] R.T. Rockafellar and R. Wets, Variational Analysis. Springer-Verlag, Berlin (1998). | MR | Zbl

[13] G. Stampacchia, Formes bilinéaires coercives sur les ensembles convexes. C. R. Acad. Sci. Paris 258 (1964) 4413-4416. | Zbl

[14] L.C. Zeng, On a general projection algorithm for variational inequalities. J. Optim. Theory Appl. 97 (1998) 229-235. | Zbl

Cité par Sources :