Necessary conditions of optimality in the form of Unmaximized Inclusions (UI) are derived for optimal control problems with state constraints. The conditions presented here generalize earlier optimality conditions to problems that may be nonconvex. The derivation of UI-type conditions in the absence of the convexity assumption is of particular importance when deriving necessary conditions for constrained problems. We illustrate this feature by establishing, as an application, optimality conditions for problems that in addition to state constraints incorporate mixed state-control constraints.
Mots-clés : optimal control, state constraints, nonsmooth analysis, Euler-Lagrange inclusion
@article{COCV_2005__11_4_614_0, author = {de Pinho, Maria do Ros\'ario and Ferreira, Maria Margarida and Fontes, Fernando}, title = {Unmaximized inclusion necessary conditions for nonconvex constrained optimal control problems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {614--632}, publisher = {EDP-Sciences}, volume = {11}, number = {4}, year = {2005}, doi = {10.1051/cocv:2005020}, mrnumber = {2167877}, zbl = {1081.49016}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2005020/} }
TY - JOUR AU - de Pinho, Maria do Rosário AU - Ferreira, Maria Margarida AU - Fontes, Fernando TI - Unmaximized inclusion necessary conditions for nonconvex constrained optimal control problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2005 SP - 614 EP - 632 VL - 11 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2005020/ DO - 10.1051/cocv:2005020 LA - en ID - COCV_2005__11_4_614_0 ER -
%0 Journal Article %A de Pinho, Maria do Rosário %A Ferreira, Maria Margarida %A Fontes, Fernando %T Unmaximized inclusion necessary conditions for nonconvex constrained optimal control problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2005 %P 614-632 %V 11 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2005020/ %R 10.1051/cocv:2005020 %G en %F COCV_2005__11_4_614_0
de Pinho, Maria do Rosário; Ferreira, Maria Margarida; Fontes, Fernando. Unmaximized inclusion necessary conditions for nonconvex constrained optimal control problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 4, pp. 614-632. doi : 10.1051/cocv:2005020. http://archive.numdam.org/articles/10.1051/cocv:2005020/
[1] Numerical Solution of Initial-Value Problems in Differential Algebraic Equations. Classics Appl. Math. SIAM, Philadelphia (1996). | MR | Zbl
, and ,[2] Optimization and Nonsmooth Analysis. Wiley, New York (1983). Reprinted as Vol. 5 of Classics Appl. Math. SIAM, Philadelphia (1990). | MR | Zbl
,[3] An Euler-Lagrange inclusion for optimal control problems with state constraints. J. Dynam. Control Syst. 8 (2002) 23-45. | Zbl
, and ,[4] Necessary conditions in Euler-Lagrange inclusion form for constrained nonconvex optimal control problems, in Proc. of the 10th Mediterranean Conference on Control and Automation. Lisbon, Portugal (2002). | Zbl
, and ,[5] Weak maximum principle for optimal control problems with mixed constraints. Nonlinear Anal. Theory Appl. 48 (2002) 1179-1196. | Zbl
and ,[6] An Euler-Lagrange inclusion for optimal control problems. IEEE Trans. Aut. Control 40 (1995) 1191-1198. | Zbl
and ,[7] Necessary conditions for optimal control problems involving nonlinear differential algebraic equations. J. Math. Anal. Appl. 212 (1997) 493-516. | Zbl
and ,[8] A maximum principle for optimal control problems with mixed constraints. IMA J. Math. Control Inform. 18 (2001) 189-205. | Zbl
, and ,[9] Maximum principle in problems of time optimal control with nonsmooth constraints. J. Appl. Math. Mech. 40 (1976) 960-969. | Zbl
,[10] Approximation Methods in Problems of Optimization and Control. Nakua, Moscow; the 2nd edition to appear in Wiley-Interscience (1988). | MR | Zbl
,[11] Variational Analysis. Springer, Berlin (1998). | MR | Zbl
and , ,Cité par Sources :