Exact controllability to the trajectories of the heat equation with Fourier boundary conditions : the semilinear case
ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 3, pp. 466-483.

This paper is concerned with the global exact controllability of the semilinear heat equation (with nonlinear terms involving the state and the gradient) completed with boundary conditions of the form y n+f(y)=0. We consider distributed controls, with support in a small set. The null controllability of similar linear systems has been analyzed in a previous first part of this work. In this second part we show that, when the nonlinear terms are locally Lipschitz-continuous and slightly superlinear, one has exact controllability to the trajectories.

DOI : 10.1051/cocv:2006011
Classification : 35K20, 93B05
Mots clés : controllability, heat equation, Fourier boundary conditions, semilinear
Fernández-Cara, Enrique  ; González-Burgos, Manuel  ; Guerrero, Sergio 1 ; Puel, Jean-Pierre 2

1 Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, boîte courrier 187, 75035 Cedex 05, Paris, France;
2 Laboratoire de Mathématiques Appliquées, Université de Versailles – St. Quentin, 45 avenue des États-Unis, 78035 Versailles, France; ; Laboratoire de Mathématiques Appliquées, Université de Versailles, St. Quentin, 45 avenue des États-Unis, 78035 Versailles, France;
@article{COCV_2006__12_3_466_0,
     author = {Fern\'andez-Cara, Enrique and Gonz\'alez-Burgos, Manuel and Guerrero, Sergio and Puel, Jean-Pierre},
     title = {Exact controllability to the trajectories of the heat equation with {Fourier} boundary conditions : the semilinear case},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {466--483},
     publisher = {EDP-Sciences},
     volume = {12},
     number = {3},
     year = {2006},
     doi = {10.1051/cocv:2006011},
     mrnumber = {2224823},
     zbl = {1106.93010},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv:2006011/}
}
TY  - JOUR
AU  - Fernández-Cara, Enrique
AU  - González-Burgos, Manuel
AU  - Guerrero, Sergio
AU  - Puel, Jean-Pierre
TI  - Exact controllability to the trajectories of the heat equation with Fourier boundary conditions : the semilinear case
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2006
SP  - 466
EP  - 483
VL  - 12
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv:2006011/
DO  - 10.1051/cocv:2006011
LA  - en
ID  - COCV_2006__12_3_466_0
ER  - 
%0 Journal Article
%A Fernández-Cara, Enrique
%A González-Burgos, Manuel
%A Guerrero, Sergio
%A Puel, Jean-Pierre
%T Exact controllability to the trajectories of the heat equation with Fourier boundary conditions : the semilinear case
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2006
%P 466-483
%V 12
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv:2006011/
%R 10.1051/cocv:2006011
%G en
%F COCV_2006__12_3_466_0
Fernández-Cara, Enrique; González-Burgos, Manuel; Guerrero, Sergio; Puel, Jean-Pierre. Exact controllability to the trajectories of the heat equation with Fourier boundary conditions : the semilinear case. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 3, pp. 466-483. doi : 10.1051/cocv:2006011. http://archive.numdam.org/articles/10.1051/cocv:2006011/

[1] H. Amann, Parabolic evolution equations and nonlinear boundary conditions. J. Diff. Equ. 72 (1988) 201-269. | Zbl

[2] J. Arrieta, A. Carvalho and A. Rodríguez-Bernal, Parabolic problems with nonlinear boundary conditions and critical nonlinearities. J. Diff. Equ. 156 (1999) 376-406. | Zbl

[3] J.P. Aubin, L'analyse non linéaire et ses motivations économiques. Masson, Paris (1984). | Zbl

[4] O. Bodart, M. González-Burgos and R. Pŕez-García, Insensitizing controls for a semilinear heat equation with a superlinear nonlinearity. C. R. Math. Acad. Sci. Paris 335 (2002) 677-682. | Zbl

[5] A. Doubova, E. Fernández-Cara and M. González-Burgos, On the controllability of the heat equation with nonlinear boundary Fourier conditions. J. Diff. Equ. 196 (2004) 385-417. | Zbl

[6] A. Doubova, E. Fernández-Cara, M. González-Burgos and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient. SIAM J. Control Optim. 41 (2002) 798-819. | Zbl

[7] L. Evans, Regularity properties of the heat equation subject to nonlinear boundary constraints. Nonlinear Anal. 1 (1997) 593-602. | Zbl

[8] C. Fabre, J.P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinburgh 125A (1995) 31-61. | Zbl

[9] L.A. Fernández and E. Zuazua, Approximate controllability for the semi-linear heat equation involving gradient terms. J. Optim. Theory Appl. 101 (1999) 307-328. | Zbl

[10] E. Fernández-Cara, M. González-Burgos, S. Guerrero and J.P. Puel, Null controllability of the heat equation with boundary Fourier conditions: The linear case. ESAIM: COCV 12 442-465. | Numdam | Zbl

[11] E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré, Anal. non Linéaire 17 (2000) 583-616. | Numdam | Zbl

[12] A. Fursikov and O.Yu. Imanuvilov, Controllability of Evolution Equations. Lecture Notes #34, Seoul National University, Korea (1996). | MR | Zbl

[13] I. Lasiecka and R. Triggiani, Exact controllability of semilinear abstract systems with applications to waves and plates boundary control. Appl. Math. Optim. 23 (1991) 109-154. | Zbl

[14] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. Cambridge University Press, Cambridge (2000). | Zbl

[15] E. Zuazua, Exact boundary controllability for the semilinear wave equation, in Nonlinear Partial Differential Equations and their Applications, Vol. X, H. Brezis and J.L. Lions Eds. Pitman (1991) 357-391. | Zbl

[16] E. Zuazua, Exact controllability for the semilinear wave equation in one space dimension. Ann. I.H.P., Analyse non Linéaire 10 (1993) 109-129. | Numdam | Zbl

Cité par Sources :