Motivated by the study of multidimensional control problems of Dieudonné-Rashevsky type, we raise the question how to understand to notion of quasiconvexity for a continuous function with a convex body K instead of the whole space as the range of definition. In the present paper, we trace the consequences of an infinite extension of outside K, and thus study quasiconvex functions which are allowed to take the value . As an appropriate envelope, we introduce and investigate the lower semicontinuous quasiconvex envelope quasiconvex and lower semicontinuous, Our main result is a representation theorem for which generalizes Dacorogna’s well-known theorem on the representation of the quasiconvex envelope of a finite function. The paper will be completed by the calculation of in two examples.
Keywords: unbounded function, quasiconvex function, quasiconvex envelope, Morrey's integral inequality, representation theorem
@article{COCV_2009__15_1_68_0, author = {Wagner, Marcus}, title = {On the lower semicontinuous quasiconvex envelope for unbounded integrands {(I)}}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {68--101}, publisher = {EDP-Sciences}, volume = {15}, number = {1}, year = {2009}, doi = {10.1051/cocv:2008067}, mrnumber = {2488569}, zbl = {1173.26009}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2008067/} }
TY - JOUR AU - Wagner, Marcus TI - On the lower semicontinuous quasiconvex envelope for unbounded integrands (I) JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 68 EP - 101 VL - 15 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2008067/ DO - 10.1051/cocv:2008067 LA - en ID - COCV_2009__15_1_68_0 ER -
%0 Journal Article %A Wagner, Marcus %T On the lower semicontinuous quasiconvex envelope for unbounded integrands (I) %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 68-101 %V 15 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2008067/ %R 10.1051/cocv:2008067 %G en %F COCV_2009__15_1_68_0
Wagner, Marcus. On the lower semicontinuous quasiconvex envelope for unbounded integrands (I). ESAIM: Control, Optimisation and Calculus of Variations, Volume 15 (2009) no. 1, pp. 68-101. doi : 10.1051/cocv:2008067. http://archive.numdam.org/articles/10.1051/cocv:2008067/
[1] Zur analytischen Lösung geometrischer Optimierungsaufgaben mittels Dualität bei Steuerungsproblemen. Teil I. Z. Angew. Math. Mech. 64 (1984) 35-44. | MR
and ,[2] Zur analytischen Lösung geometrischer Optimierungsaufgaben mittels Dualität bei Steuerungsproblemen. Teil II. Z. Angew. Math. Mech. 64 (1984) 147-153. | MR
and ,[3] Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. 2nd Edn., Springer, New York etc. (2006). | MR | Zbl
and ,[4] -quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225-253. | MR | Zbl
and ,[5] An Introduction to Convex Polytopes. Springer, New York - Heidelberg - Berlin (1983). | MR | Zbl
,[6] Edge detection within optical flow via multidimensional control. BTU Cottbus, Preprint-Reihe Mathematik, Preprint Nr. M-02/2008 (submitted).
, and ,[7] Vorlesungen über reelle Funktionen. 3rd Edn., Chelsea, New York (1968). | MR
,[8] An algebraic characterization of quasi-convex functions. Ricerche di Mat. 42 (1993) 11-24. | MR | Zbl
,[9] Optimization and Nonsmooth Analysis. 2nd Edn., SIAM, Philadelphia (1990). | MR | Zbl
,[10] Optimierungsaufgaben, 2nd Edn., Heidelberger Taschenbücher 15. Springer, Berlin - Heidelberg - New York (1971). | MR | Zbl
and ,[11] Quasiconvexity and relaxation of nonconvex problems in the calculus of variations. J. Funct. Anal. 46 (1982) 102-118. | MR | Zbl
,[12] Direct Methods in the Calculus of Variations. 2nd Edn., Springer, New York etc. (2008). | MR | Zbl
,[13] Semi-continuité des fonctionnelles avec contraintes du type 4 (1985) 179-189. | MR | Zbl
and ,[14] General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial case. Acta Math. 178 (1997) 1-37. | MR | Zbl
and ,[15] Cauchy-Dirichlet problem for first order nonlinear systems. J. Funct. Anal. 152 (1998) 404-446. | MR | Zbl
and ,[16] Implicit Partial Differential Equations. Birkhäuser, Boston - Basel - Berlin (1999). | MR | Zbl
and ,[17] On some definitions and properties of generalized convex sets arising in the calculus of variations, in Recent Advances on Elliptic and Parabolic Issues, M. Chipot and H. Ninomiya Eds., Proceedings of the 2004 Swiss-Japanese Seminar: Zurich, Switzerland, 6-10 December 2004, World Scientific, Singapore (2006) 103-128.
and ,[18] The relaxation of some classes of variational integrals with pointwise continuous-type gradient constraints. Appl. Math. Optim. 51 (2005) 251-257. | MR | Zbl
and ,[19] On the relaxation and the Lavrentieff phenomenon for variational integrals with pointwise measurable gradient constraints. Calc. Var. Partial Differential Equations 21 (2004) 357-400. | MR | Zbl
, and ,[20] Convex Analysis and Variational Problems. 2nd Edn., SIAM, Philadelphia (1999). | MR | Zbl
and ,[21] Maß- und Integrationstheorie. Springer, New York - Heidelberg - Berlin (1996). | MR | Zbl
,[22] Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton etc. (1992). | MR | Zbl
and ,[23] Theorie der Extremalaufgaben. VEB Deutscher Verlag der Wissenschaften, Berlin (1979). | MR | Zbl
and ,[24] From Mumford-Shah to Perona-Malik in image processing. Math. Meth. Appl. Sci. 27 (2004) 1803-1814. | MR | Zbl
,[25] Characterizations of Young measures generated by gradients. Arch. Rat. Mech. Anal. 115 (1991) 329-365. | MR | Zbl
and ,[26] On the non-locality of quasiconvexity. Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 1-13. | Numdam | MR | Zbl
,[27] Two convex counterexamples: A discontinuous envelope function and a nondifferentiable nearest-point mapping. Proc. Amer. Math. Soc. 23 (1969) 697-703. | MR | Zbl
,[28] Bauer's maximum principle and hulls of sets. Calc. Var. Partial Differential Equations 11 (2000) 321-332. | MR | Zbl
,[29] Quasiconvex extreme points of convex sets, in Elliptic and Parabolic Problems, J. Bemelmans, B. Brighi, A. Brillard, M. Chipot, F. Conrad, I. Shafrir, V. Valente and G. Vergara-Caffarelli Eds., World Scientific Publishing, River Edge (2002) 145-151. | MR | Zbl
,[30] Hayka, Moscow (1975).
,[31] Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2 (1952) 25-53. | MR | Zbl
,[32] Piecewise continuous controls in Dieudonné-Rashevsky type problems. J. Optim. Theory Appl. 127 (2005) 145-163. | MR
and ,[33] Convex Analysis. 2nd Edn., Princeton University Press, Princeton (1972). | MR | Zbl
,[34] Variational Analysis, Grundlehren 317. Springer, Berlin etc. (1998). | MR | Zbl
and ,[35] Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge (1993). | MR | Zbl
,[36] Finite extensions of convex functions. Math. Operationsforschung Statist. Ser. Optimization 10 (1979) 501-509. | MR | Zbl
and ,[37] Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh Ser. A 120 (1992) 185-189. | MR | Zbl
,[38] Elastic-plastic torsion of convex cylindrical bars. J. Math. Mech. 19 (1969) 531-551. | MR | Zbl
,[39] Elastic-plastic torsion problem III. Arch. Rat. Mech. Anal. 34 (1969) 228-244. | MR | Zbl
,[40] Erweiterungen des mehrdimensionalen Pontrjaginschen Maximumprinzips auf meßbare und beschränkte sowie distributionelle Steuerungen. Ph.D. thesis, Universität Leipzig, Germany (1996).
,[41] Nonconvex relaxation properties of multidimensional control problems, in Recent Advances in Optimization, A. Seeger Ed., Lecture Notes in Economics and Mathematical Systems 563, Springer, Berlin etc. (2006) 233-250. | MR | Zbl
,[42] Mehrdimensionale Steuerungsprobleme mit quasikonvexen Integranden. Habilitation thesis, Brandenburgische Technische Universität Cottbus, Cottbus, Germany (2006).
,[43] Pontryagin's maximum principle for multidimensional control problems in image processing. J. Optim. Theory Appl. (to appear). | MR | Zbl
,[44] On the structure of quasiconvex hulls. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 663-686. | Numdam | MR | Zbl
,[45] On the quasiconvex exposed points. ESAIM: COCV 6 (2001) 1-19 (electronic). | Numdam | MR | Zbl
,Cited by Sources: