Switching and stability properties of conewise linear systems
ESAIM: Control, Optimisation and Calculus of Variations, Volume 16 (2010) no. 3, p. 764-793

Being a unique phenomenon in hybrid systems, mode switch is of fundamental importance in dynamic and control analysis. In this paper, we focus on global long-time switching and stability properties of conewise linear systems (CLSs), which are a class of linear hybrid systems subject to state-triggered switchings recently introduced for modeling piecewise linear systems. By exploiting the conic subdivision structure, the “simple switching behavior” of the CLSs is proved. The infinite-time mode switching behavior of the CLSs is shown to be critically dependent on two attracting cones associated with each mode; fundamental properties of such cones are investigated. Verifiable necessary and sufficient conditions are derived for the CLSs with infinite mode switches. Switch-free CLSs are also characterized by exploring the polyhedral structure and the global dynamical properties. The equivalence of asymptotic and exponential stability of the CLSs is established via the uniform asymptotic stability of the CLSs that in turn is proved by the continuous solution dependence on initial conditions. Finally, necessary and sufficient stability conditions are obtained for switch-free CLSs.

DOI : https://doi.org/10.1051/cocv/2009021
Classification:  93B12,  93D05,  93D20
Keywords: variable structure systems, Lyapunov and other classical stabilities, asymptotic stability
@article{COCV_2010__16_3_764_0,
     author = {Shen, Jinglai and Han, Lanshan and Pang, Jong-Shi},
     title = {Switching and stability properties of conewise linear systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {16},
     number = {3},
     year = {2010},
     pages = {764-793},
     doi = {10.1051/cocv/2009021},
     zbl = {1195.93028},
     mrnumber = {2674636},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2010__16_3_764_0}
}
Shen, Jinglai; Han, Lanshan; Pang, Jong-Shi. Switching and stability properties of conewise linear systems. ESAIM: Control, Optimisation and Calculus of Variations, Volume 16 (2010) no. 3, pp. 764-793. doi : 10.1051/cocv/2009021. http://www.numdam.org/item/COCV_2010__16_3_764_0/

[1] A. Arapostathis and M.E. Broucke, Stability and controllability of planar conewise linear systems. Systems Control Lett. 56 (2007) 150-158. | Zbl 1108.93013

[2] V.I. Arnold, Mathematical Methods of Classical Mechanics. Second Edition, Springer-Verlag, New York (1989). | Zbl 0386.70001

[3] S. Basu, R. Pollack and M.-F. Roy, Algorithms in Real Algebraic Geometry. Springer-Verlag (2003). | Zbl 1102.14041

[4] A. Berman, M. Neumann and R.J. Stern, Nonnegative Matrices in Dynamical Systems. John Wiley & Sons, New York (1989). | Zbl 0723.93013

[5] S.P. Bhat and D.S. Bernstein, Lyapunov analysis of semistability, in Proceedings of 1999 American Control Conference, San Diego (1999) 1608-1612.

[6] J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry. Springer (1998). | Zbl 0912.14023

[7] N.K. Bose, Applied Multidimensional Systems Theory. Van Nostrand Reinhold (1982). | Zbl 0574.93031

[8] B. Brogliato, Some perspectives on analysis and control of complementarity systems. IEEE Trans. Automat. Contr. 48 (2003) 918-935.

[9] M.K. Çamlibel, W.P.M.H. Heemels and J.M. Schumacher, On linear passive complementarity systems. European J. Control 8 (2002) 220-237. | Zbl 0954.34007

[10] M.K. Çamlıbel, J.S. Pang and J. Shen, Lyapunov stability of complementarity and extended systems. SIAM J. Optim. 17 (2006) 1056-1101. | Zbl 1124.93042

[11] M.K. Çamlibel, J.S. Pang and J. Shen, Conewise linear systems: non-Zenoness and observability. SIAM J. Control Optim. 45 (2006) 1769-1800. | Zbl 1126.93030

[12] M.K. Çamlibel, W.P.M.H. Heemels and J.M. Schumacher, Algebraic necessary and sufficient conditions for the controllability of conewise linear systems. IEEE Trans. Automat. Contr. 53 (2008) 762-774.

[13] C.T. Chen, Linear System Theory and Design. Oxford University Press, Oxford (1984).

[14] R.W. Cottle, J.S. Pang and R.E. Stone, The Linear Complementarity Problem. Academic Press Inc., Cambridge (1992). | Zbl 0757.90078

[15] F. Facchinei and J.S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer-Verlag, New York (2003). | Zbl 1062.90002

[16] D. Goeleven and B. Brogliato, Stability and instability matrices for linear evoluation variational inequalities. IEEE Trans. Automat. Contr. 49 (2004) 483-490.

[17] L. Han and J.S. Pang, Non-Zenoness of a class of differential quasi-variational inequalities. Math. Program. Ser. A 121 (2009) 171-199. | Zbl 1188.34011

[18] W.P.M.H. Heemels, J.M. Schumacher and S. Weiland, Linear complementarity systems. SIAM J. Appl. Math. 60 (2000) 1234-1269. | Zbl 0954.34007

[19] J.P. Hespanha, Uniform stability of switched linear systems: extension of LaSalle's invariance principle. IEEE Trans. Automat. Contr. 49 (2004) 470-482.

[20] J.P. Hespanha, D. Liberzon, D. Angeli and E.D. Sontag, Nonlinear norm-observability notions and stability of switched systems. IEEE Trans. Automat. Contr. 50 (2005) 154-168. | Zbl 0948.93048

[21] H. Khalil, Nonlinear Systems. Second Edition, Prentice Hall (1996). | Zbl 1003.34002

[22] J. Kurzweil, On the inversion of Lyapunov's second theorem on stability of motion. American Math. Soc. Translation 24 (1963) 19-77. | Zbl 0127.30703

[23] D. Liberzon, J.P. Hespanha and A.S. Morse, Stability of switched systems: a Lie-algebraic condition. Systems Control Lett. 37 (1999) 117-122. | Zbl 0948.93048

[24] J. Lygeros, K.H. Johansson, S.N. Simic, J. Zhang and S. Sastry, Dynamic properties of hybrid automata. IEEE Trans. Automat. Contr. 48 (2003) 2-17.

[25] P. Mason, U. Boscain and Y. Chitour, Common polynomial Lyapunov functions for linear switched systems. SIAM J. Control Optim. 45 (2006) 226-245. | Zbl 1132.93038

[26] A.P. Molchanove and Y.S. Pyatnitskiy, Criteria of asymptotic stability of differential and difference inclusions encountered in control theory. Systems Control Lett. 13 (1989) 59-64. | Zbl 0684.93065

[27] M. Pachter and D.H. Jacobson, Observability with a conic observation set. IEEE Trans. Automat. Contr. 24 (1979) 632-633. | Zbl 0412.93014

[28] J.S. Pang and J. Shen, Strongly regular differential variational systems. IEEE Trans. Automat. Contr. 52 (2007) 242-255.

[29] J.S. Pang and D. Stewart, Differential variational inequalities. Math. Program. Ser. A 113 (2008) 345-424. | Zbl 1139.58011

[30] P.A. Parrilo, Semidefinite programming relaxations for semialgebraic problems. Math. Program. Ser. B 96 (2003) 293-320. | Zbl 1043.14018

[31] S. Scholtes, Introduction to Piecewise Differentiable Equations. Habilitation thesis, Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Karlsruhe, Germany (1994).

[32] J.M. Schumacher, Complementarity systems in optimization. Math. Program. Ser. B 101 (2004) 263-295. | Zbl 1076.90060

[33] J. Shen and J.S. Pang, Linear complementarity systems: Zeno states. SIAM J. Control Optim. 44 (2005) 1040-1066. | Zbl 1092.90052

[34] J. Shen and J.S. Pang, Linear complementarity systems with singleton properties: non-Zenoness, in Proceedings of 2007 American Control Conference, New York (2007) 2769-2774. | Zbl 1092.90052

[35] J. Shen and J.S. Pang, Semicopositive linear complementarity systems. Internat. J. Robust Nonlinear Control 17 (2007) 1367-1386. | Zbl 1177.90388

[36] G.V. Smirnov, Introduction to the Theory of Differential Inclusions, Graduate Studies in Mathematics 41. American Mathematical Society, Providence (2002). | Zbl 0992.34001