Homogenization of integral functionals is studied under the constraint that admissible maps have to take their values into a given smooth manifold. The notion of tangential homogenization is defined by analogy with the tangential quasiconvexity introduced by Dacorogna et al. [Calc. Var. Part. Diff. Eq. 9 (1999) 185-206]. For energies with superlinear or linear growth, a Γ-convergence result is established in Sobolev spaces, the homogenization problem in the space of functions of bounded variation being the object of [Babadjian and Millot, Calc. Var. Part. Diff. Eq. 36 (2009) 7-47].
Mots clés : homogenization, Γ-convergence, manifold valued maps
@article{COCV_2010__16_4_833_0, author = {Babadjian, Jean-Fran\c{c}ois and Millot, Vincent}, title = {Homogenization of variational problems in manifold valued {Sobolev} spaces}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {833--855}, publisher = {EDP-Sciences}, volume = {16}, number = {4}, year = {2010}, doi = {10.1051/cocv/2009025}, mrnumber = {2744153}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2009025/} }
TY - JOUR AU - Babadjian, Jean-François AU - Millot, Vincent TI - Homogenization of variational problems in manifold valued Sobolev spaces JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 833 EP - 855 VL - 16 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2009025/ DO - 10.1051/cocv/2009025 LA - en ID - COCV_2010__16_4_833_0 ER -
%0 Journal Article %A Babadjian, Jean-François %A Millot, Vincent %T Homogenization of variational problems in manifold valued Sobolev spaces %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 833-855 %V 16 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2009025/ %R 10.1051/cocv/2009025 %G en %F COCV_2010__16_4_833_0
Babadjian, Jean-François; Millot, Vincent. Homogenization of variational problems in manifold valued Sobolev spaces. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 4, pp. 833-855. doi : 10.1051/cocv/2009025. http://archive.numdam.org/articles/10.1051/cocv/2009025/
[1] 3D-2D asymptotic analysis for micromagnetic energies. ESAIM: COCV 6 (2001) 489-498. | Numdam | Zbl
and ,[2] On the relaxation in of quasiconvex integrals. J. Funct. Anal. 109 (1992) 76-97. | Zbl
and ,[3] Homogenization of variational problems in manifold valued -spaces. Calc. Var. Part. Diff. Eq. 36 (2009) 7-47. | Zbl
and ,[4] The approximation problem for Sobolev maps between two manifolds. Acta Math. 167 (1991) 153-206. | Zbl
,[5] Density of smooth functions between two manifolds in Sobolev spaces. J. Funct. Anal. 80 (1988) 60-75. | Zbl
and ,[6] Relaxed energies for harmonic maps, in Variational methods, Paris (1988), H. Berestycki, J.M. Coron and I. Ekeland Eds., Progress in Nonlinear Differential Equations and Their Applications 4, Birkhäuser, Boston (1990) 37-52. | Zbl
, and ,[7] Homogenization of some almost periodic coercive functional. Rend. Accad. Naz. Sci. XL 103 (1985) 313-322. | Zbl
,[8] Homogenization of multiple integrals, Oxford Lecture Series in Mathematics and its Applications 12. Oxford University Press, New York (1998). | Zbl
and ,[9] Homogenization of free discontinuity problems. Arch. Rational Mech. Anal. 135 (1996) 297-356. | Zbl
, and ,[10] Harmonic maps with defects. Comm. Math. Phys. 107 (1986) 649-705. | Zbl
, and ,[11] Direct methods in the calculus of variations. Springer-Verlag (1989). | Zbl
,[12] Manifold constrained variational problems. Calc. Var. Part. Diff. Eq. 9 (1999) 185-206. | Zbl
, , and ,[13] An Introdution to Γ-convergence. Birkhäuser, Boston (1993). | Zbl
,[14] Analyse convexe et problèmes variationnels. Dunod, Gauthiers-Villars, Paris (1974). | Zbl
and ,[15] Quasiconvex integrands and lower semicontinuity in L1. SIAM J. Math. Anal. 23 (1992) 1081-1098. | Zbl
and ,[16] Relaxation of quasiconvex functionals in for integrands . Arch. Rational Mech. Anal. 123 (1993) 1-49. | Zbl
and ,[17] Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29 (1998) 736-756. | Zbl
, and ,[18] Cartesian currents in the calculus of variations, Modern surveys in Mathematics 37-38. Springer-Verlag, Berlin (1998). | Zbl
, and ,[19] The relaxed Dirichlet energy of manifold constrained mappings. Adv. Calc. Var. 1 (2008) 1-51. | Zbl
, and ,[20] Periodic solutions and homogenization of nonlinear variational problems. Ann. Mat. Pura Appl. (4) 117 (1978) 139-152. | Zbl
,[21] Homogenization of nonconvex integral functionals and cellular elastic materials. Arch. Rational Mech. Anal. 99 (1987) 189-212. | Zbl
,Cité par Sources :