Quasiconvex relaxation of multidimensional control problems with integrands f(t,ξ,v)
ESAIM: Control, Optimisation and Calculus of Variations, Volume 17 (2011) no. 1, p. 190-221

We prove a general relaxation theorem for multidimensional control problems of Dieudonné-Rashevsky type with nonconvex integrands f(t, ξ, v) in presence of a convex control restriction. The relaxed problem, wherein the integrand f has been replaced by its lower semicontinuous quasiconvex envelope with respect to the gradient variable, possesses the same finite minimal value as the original problem, and admits a global minimizer. As an application, we provide existence theorems for the image registration problem with convex and polyconvex regularization terms.

DOI : https://doi.org/10.1051/cocv/2010008
Classification:  26B05,  26B25,  49J20,  49J45,  68U10
Keywords: quasiconvex functions with infinite values, lower semicontinuous quasiconvex envelope, multidimensional control problem, relaxation, existence of global minimizers, image registration, polyconvex regularization
@article{COCV_2011__17_1_190_0,
     author = {Wagner, Marcus},
     title = {Quasiconvex relaxation of multidimensional control problems with integrands $f(t,\xi ,v)$},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {1},
     year = {2011},
     pages = {190-221},
     doi = {10.1051/cocv/2010008},
     zbl = {1217.49007},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2011__17_1_190_0}
}
Wagner, Marcus. Quasiconvex relaxation of multidimensional control problems with integrands $f(t,\xi ,v)$. ESAIM: Control, Optimisation and Calculus of Variations, Volume 17 (2011) no. 1, pp. 190-221. doi : 10.1051/cocv/2010008. http://www.numdam.org/item/COCV_2011__17_1_190_0/

[1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rat. Mech. Anal. 86 (1984) 125-145. | MR 751305 | Zbl 0565.49010

[2] L. Alvarez, J. Weickert and J. Sánchez, Reliable estimation of dense optical flow fields with large displacements. Int. J. Computer Vision 39 (2000) 41-56. | Zbl 1060.68635

[3] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Second edn., Springer, New York etc. (2006). | MR 2244145 | Zbl 1110.35001

[4] J.M. Ball and F. Murat, W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225-253. | MR 759098 | Zbl 0549.46019

[5] N. Bourbaki, Éléments de Mathématique, Livre VI : Intégration, Chapitres I-IV. Hermann, Paris, France (1952). | Zbl 1116.28002

[6] M. Brokate, Pontryagin's principle for control problems in age-dependent population dynamics. J. Math. Biology 23 (1985) 75-101. | MR 821685 | Zbl 0599.92017

[7] A. Brøndsted, An Introduction to Convex Polytopes. Springer, New York-Heidelberg-Berlin (1983). | MR 683612 | Zbl 0509.52001

[8] C. Brune, H. Maurer and M. Wagner, Detection of intensity and motion edges within optical flow via multidimensional control. SIAM J. Imaging Sci. 2 (2009) 1190-1210. | MR 2559164 | Zbl 1181.49029

[9] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Pitman Research Notes in Mathematics 207. Longman, Harlow (1989). | MR 1020296 | Zbl 0669.49005

[10] S. Conti, Quasiconvex functions incorporating volumetric constraints are rank-one convex. J. Math. Pures Appl. 90 (2008) 15-30. | MR 2435211 | Zbl 1146.49009

[11] B. Dacorogna, Introduction to the Calculus of Variations. Imperial College Press, London, UK (2004) | MR 2162819 | Zbl 1159.49001

[12] B. Dacorogna, Direct Methods in the Calculus of Variations. Second edn., Springer, New York etc. (2008). | MR 2361288 | Zbl 0703.49001

[13] B. Dacorogna and P. Marcellini, General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial case. Acta Math. 178 (1997) 1-37. | MR 1448710 | Zbl 0901.49027

[14] M. Droske and M. Rumpf, A variational approach to nonrigid morphological image registration. SIAM J. Appl. Math. 64 (2004) 668-687. | MR 2049668 | Zbl 1063.49013

[15] N. Dunford and J.T. Schwartz, Linear Operators. Part I: General Theory. Wiley-Interscience, New York etc. (1988). | MR 1009162 | Zbl 0635.47001

[16] I. Ekeland and R. Témam, Convex Analysis and Variational Problems. Second edn., SIAM, Philadelphia, USA (1999). | MR 1727362 | Zbl 0939.49002

[17] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton etc. (1992). | MR 1158660 | Zbl 0804.28001

[18] G. Feichtinger, G. Tragler and V.M. Veliov, Optimality conditions for age-structured control systems. J. Math. Anal. Appl. 288 (2003) 47-68. | MR 2019744 | Zbl 1042.49035

[19] L. Franek, M. Franek, H. Maurer and M. Wagner, Image restoration and simultaneous edge detection by optimal control methods. BTU Cottbus, Preprint-Reihe Mathematik, Preprint Nr. M-05/2008. Optim. Contr. Appl. Meth. (submitted).

[20] L.A. Gallardo and M.A. Meju, Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. Geophys. Res. Lett. 30 (2003) 1658.

[21] E. Haber and J. Modersitzki, Intensity gradient based registration and fusion of multi-modal images. Methods Inf. Med. 46 (2007) 292-299.

[22] S. Henn and K. Witsch, A multigrid approach for minimizing a nonlinear functional for digital image matching. Computing 64 (2000) 339-348. | MR 1782025 | Zbl 0961.65120

[23] S. Henn and K. Witsch, Iterative multigrid regularization techniques for image matching. SIAM J. Sci. Comput. 23 (2001) 1077-1093. | MR 1885591 | Zbl 0999.65057

[24] G. Hermosillo, C. Chefd'Hotel and O. Faugeras, Variational methods for multimodal image matching. Int. J. Computer Vision 50 (2002) 329-343. | Zbl 1012.68788

[25] W. Hinterberger, O. Scherzer, C. Schnörr and J. Weickert, Analysis of optical flow models in the framework of the calculus of variations. Num. Funct. Anal. Optim. 23 (2002) 69-89. | MR 1900411 | Zbl 1016.49002

[26] D. Kinderlehrer and P. Pedregal, Characterizations of Young measures generated by gradients. Arch. Rat. Mech. Anal. 115 (1991) 329-365. | MR 1120852 | Zbl 0754.49020

[27] P. Marcellini and C. Sbordone, Semicontinuity problems in the calculus of variations. Nonlinear Anal. 4 (1980) 241-257. | MR 563807 | Zbl 0537.49002

[28] J. Modersitzki, Numerical Methods for Image Registration. Oxford University Press, Oxford, UK (2004). | MR 2035877 | Zbl 1055.68140

[29] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Grundlehren 130. Springer, Berlin-Heidelberg-New York (1966). | MR 202511 | Zbl 0142.38701

[30] S. Pickenhain and M. Wagner, Critical points in relaxed deposit problems, in Calculus of Variations and Optimal Control, Technion 98, Vol. II, A. Ioffe, S. Reich and I. Shafrir Eds., Research Notes in Mathematics 411, Chapman & Hall/CRC Press, Boca Raton etc. (2000) 217-236. | MR 1713865 | Zbl 0960.49021

[31] T. Roubíček, Relaxation in Optimization Theory and Variational Calculus. De Gruyter, Berlin-New York (1997). | Zbl 0880.49002

[32] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge, UK (1993). | MR 1216521 | Zbl 1287.52001

[33] T.W. Ting, Elastic-plastic torsion of convex cylindrical bars. J. Math. Mech. 19 (1969) 531-551. | MR 250546 | Zbl 0197.23301

[34] T.W. Ting, Elastic-plastic torsion problem III. Arch. Rat. Mech. Anal. 34 (1969) 228-244. | MR 264889 | Zbl 0179.53903

[35] M. Wagner, Erweiterungen des mehrdimensionalen Pontrjaginschen Maximumprinzips auf meßbare und beschränkte sowie distributionelle Steuerungen. Ph.D. Thesis, University of Leipzig, Germany (1996).

[36] M. Wagner, Mehrdimensionale Steuerungsprobleme mit quasikonvexen Integranden. Habilitation Thesis, BTU Cottbus, Germany (2006).

[37] M. Wagner, Nonconvex relaxation properties of multidimensional control problems, in Recent Advances in Optimization, A. Seeger Ed., Lecture Notes in Economics and Mathematical Systems 563, Springer, Berlin etc. (2006) 233-250. | MR 2191161 | Zbl 1108.49028

[38] M. Wagner, Quasiconvex relaxation of multidimensional control problems. Adv. Math. Sci. Appl. 18 (2008) 305-327. | MR 2459684 | Zbl 1154.49007

[39] M. Wagner, Jensen's inequality for the lower semicontinuous quasiconvex envelope and relaxation of multidimensional control problems. J. Math. Anal. Appl. 355 (2009) 606-619. | MR 2521737 | Zbl 1162.49016

[40] M. Wagner, On the lower semicontinuous quasiconvex envelope for unbounded integrands (I). ESAIM: COCV 15 (2009) 68-101. | Numdam | MR 2488569 | Zbl 1173.26009

[41] M. Wagner, On the lower semicontinuous quasiconvex envelope for unbounded integrands (II): Representation by generalized controls. J. Convex Anal. 16 (2009) 441-472. | MR 2559954 | Zbl 1186.26025

[42] M. Wagner, Pontryagin's maximum principle for multidimensional control problems in image processing. J. Optim. Theory Appl. 140 (2009) 543-576. | MR 2481615 | Zbl 1159.49033

[43] M. Wagner, Elastic/hyperelastic image registration unter Nebenbedingungen als mehrdimensionales Steuerungsproblem. Preprint-Reihe Mathematik, Preprint Nr. M-09/2009, BTU Cottbus, Germany (2009). | MR 2481615