Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach
ESAIM: Control, Optimisation and Calculus of Variations, Volume 17 (2011) no. 1, p. 1-27

A new approach to irreversible quasistatic fracture growth is given, by means of Young measures. The study concerns a cohesive zone model with prescribed crack path, when the material gives different responses to loading and unloading phases. In the particular situation of constant unloading response, the result contained in [G. Dal Maso and C. Zanini, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007) 253-279] is recovered. In this case, the convergence of the discrete time approximations is improved.

DOI : https://doi.org/10.1051/cocv/2009037
Classification:  49K10,  49Q20
Keywords: variational models, energy minimization, free discontinuity problems, crack propagation, Young measures, quasistatic evolution, rate-independent processes
@article{COCV_2011__17_1_1_0,
     author = {Cagnetti, Filippo and Toader, Rodica},
     title = {Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {1},
     year = {2011},
     pages = {1-27},
     doi = {10.1051/cocv/2009037},
     zbl = {1210.49046},
     mrnumber = {2775184},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2011__17_1_1_0}
}
Cagnetti, Filippo; Toader, Rodica. Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach. ESAIM: Control, Optimisation and Calculus of Variations, Volume 17 (2011) no. 1, pp. 1-27. doi : 10.1051/cocv/2009037. http://www.numdam.org/item/COCV_2011__17_1_1_0/

[1] G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7 (1962) 55-129. | MR 149728

[2] F. Cagnetti, A vanishing viscosity approach to fracture growth in a cohesive zone model with prescribed crack path. Math. Models Methods Appl. Sci. 18 (2008) 1027-1071. | MR 2435184 | Zbl 1154.49005

[3] D.L. Cohn, Measure theory. Reprint of the 1980 original, Birkhäuser, Boston, USA (1993). | MR 1454121 | Zbl 0860.28001

[4] G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal. 162 (2002) 101-135. | MR 1897378 | Zbl 1042.74002

[5] G. Dal Maso and C. Zanini, Quasi-static crack growth for a cohesive zone model with prescribed crack path. Proc. Roy. Soc. Edinburgh Sect. A 137 (2007) 253-279. | MR 2360770 | Zbl 1116.74004

[6] G. Dal Maso, G.A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176 (2005) 165-225. | MR 2186036 | Zbl 1064.74150

[7] G.A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319-1342. | MR 1633984 | Zbl 0966.74060

[8] A. Mielke, Evolution of rate-independent systems, in Handbook of differential equations, evolutionary equations 2, C.M. Dafermos and E. Feireisl Eds., Elsevier, Amsterdam, The Netherlands (2005) 461-559. | MR 2182832 | Zbl 1120.47062

[9] J. Neveu, Discrete-Parameter Martingales. American Elsevier, Amsterdam, The Netherlands (1975). | MR 402915 | Zbl 0345.60026

[10] M. Valadier, Young measures, in Methods of nonconvex analysis (Varenna, 1989) 1446, Lect. Notes Math., Springer, Berlin, Germany (1990) 152-188. | MR 1079763 | Zbl 0738.28004