We investigate a global-in-time variational approach to abstract evolution by means of the weighted energy-dissipation functionals proposed by Mielke and Ortiz [ESAIM: COCV 14 (2008) 494-516]. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of minimizers and approximate minimizers of these functionals to the unique solution of the gradient flow. Sharp convergence rates are provided and the convergence analysis is combined with time-discretization. Applications of the theory to various classes of parabolic PDE problems are presented. In particular, we focus on two examples of microstructure evolution from [S. Conti and M. Ortiz, J. Mech. Phys. Solids 56 (2008) 1885-1904.].
Mots-clés : variational principle, gradient flow, convergence
@article{COCV_2011__17_1_52_0, author = {Mielke, Alexander and Stefanelli, Ulisse}, title = {Weighted energy-dissipation functionals for gradient flows}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {52--85}, publisher = {EDP-Sciences}, volume = {17}, number = {1}, year = {2011}, doi = {10.1051/cocv/2009043}, mrnumber = {2775186}, zbl = {1218.35007}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv/2009043/} }
TY - JOUR AU - Mielke, Alexander AU - Stefanelli, Ulisse TI - Weighted energy-dissipation functionals for gradient flows JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 52 EP - 85 VL - 17 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2009043/ DO - 10.1051/cocv/2009043 LA - en ID - COCV_2011__17_1_52_0 ER -
%0 Journal Article %A Mielke, Alexander %A Stefanelli, Ulisse %T Weighted energy-dissipation functionals for gradient flows %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 52-85 %V 17 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2009043/ %R 10.1051/cocv/2009043 %G en %F COCV_2011__17_1_52_0
Mielke, Alexander; Stefanelli, Ulisse. Weighted energy-dissipation functionals for gradient flows. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 52-85. doi : 10.1051/cocv/2009043. https://www.numdam.org/articles/10.1051/cocv/2009043/
[1] Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics, ETH Zürich. Birkhäuser Verlag, Basel, Switzerland (2005). | MR | Zbl
, and ,[2] Singular perturbation and interpolation. Math. Models Methods Appl. Sci. 4 (1994) 557-570. | MR | Zbl
and ,[3] Nonlinear semigroups and differential equations in Banach spaces. Noordhoff International Publishing, Leyden, The Netherlands (1976). | MR | Zbl
,[4] Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften 223. Springer-Verlag, Berlin, Germany (1976). | MR | Zbl
and ,[5] Variational principles in irreversible thermodynamics with application to viscoelasticity. Phys. Rev. (2) 97 (1955) 1463-1469. | MR | Zbl
,[6] Classes d'interpolation associées à un opérateur monotone. C. R. Acad. Sci. Paris Sér. A-B 276 (1973) A1553-A1556. | MR | Zbl
,[7] Monotonicity methods in Hilbert spaces and some application to nonlinear partial differential equations, in Contrib. to nonlin. functional analysis, Proc. Sympos. Univ. Wisconsin, Madison, Academic Press, New York, USA (1971) 101-156. | MR | Zbl
,[8] Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North Holland Math. Studies 5. Amsterdam, North-Holland (1973). | MR | Zbl
,[9] Interpolation classes for monotone operators, in Partial differential equations and related topics (Program, Tulane Univ., New Orleans, 1974), Lecture Notes in Math. 446, Springer, Berlin, Germany (1975) 65-74. | MR | Zbl
,[10] Un principe variationnel associé à certaines équations paraboliques. Le cas indépendant du temps. C. R. Acad. Sci. Paris Sér. A-B 282 (1976) A971-A974. | MR | Zbl
and ,[11] Un principe variationnel associé à certaines équations paraboliques. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B 282 (1976) A1197-A1198. | MR | Zbl
and ,[12] Optimization and nonsmooth analysis, Classics in Applied Mathematics 5. Second edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, USA (1990). | MR | Zbl
,[13] Minimum principles for the trajectories of systems governed by rate problems. J. Mech. Phys. Solids 56 (2008) 1885-1904. | MR | Zbl
and ,[14] Semi-groups of nonlinear contractions and dissipative sets. J. Funct. Anal. 3 (1969) 376-418. | MR | Zbl
and ,[15] Conjectures concerning some evolution problems. Duke Math. J. 81 (1996) 255-268. A celebration of John F. Nash, Jr. | MR | Zbl
,[16] Selfdual partial differential systems and their variational principles, Springer Monographs in Mathematics. Springer, New York, USA (2009). | MR
,[17] Variational principles in the linear theory of viscoelasticity. Arch. Ration. Mech. Anal. 13 (1963) 179-191. | MR | Zbl
,[18] Variational principles for linear elastodynamics. Arch. Ration. Mech. Anal. 16 (1964) 34-50. | MR | Zbl
,[19] Variational principles for linear initial value problems. Quart. Appl. Math. 22 (1964) 252-256. | Zbl
,[20] Variational principles for parabolic equations. Appl. Math. 14 (1969) 278-297. | Zbl
,[21] Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc. 108. American Mathematical Society, USA (1994). | MR | Zbl
,[22] Surface energy and microstructure in coherent phase transitions. Comm. Pure Appl. Math. 47 (1994) 405-435. | MR | Zbl
and ,[23] Nonlinear semi-groups in Hilbert space. J. Math. Soc. Japan 19 (1967) 493-507. | MR | Zbl
,[24] Non-homogeneus boundary value problems and applications 1. Springer-Verlag, New York-Heidelberg (1972). | Zbl
and ,[25] Curves of maximal slope and parabolic variational inequalities on nonconvex constraints. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 (1989) 281-330. | Numdam | MR | Zbl
, and ,[26] A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems. ESAIM: COCV 14 (2008) 494-516. | Numdam | MR
and ,[27] A discrete variational principle for rate-independent evolution. Adv. Calc. Var. 1 (2008) 399-431. | MR | Zbl
and ,[28] Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B 282 (1976) A1035-A1038. | MR | Zbl
,[29] Un théorème de minimum pour certains systèmes dissipatifs. Variante hilbertienne. Travaux Sém. Anal. Convexe 6 (1976) 22. | MR | Zbl
,[30] A posteriori error estimates for variable time-step discretization of nonlinear evolution equations. Comm. Pure Appl. Math. 53 (2000) 525-589. | MR | Zbl
, and ,[31] A continuum model of kinetic roughening and coarsening in thin films. J. Mech. Phys. Solids 47 (1999) 697-730. | MR | Zbl
, and ,[32] The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations 26 (2001) 101-174. | MR | Zbl
,[33] Gradient flows of non convex functionals in Hilbert spaces and applications. ESAIM: COCV 12 (2006) 564-614. | Numdam | MR | Zbl
and ,[34] A metric approach to a class of doubly nonlinear evolution equations and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) VII (2008) 97-169. | Numdam | MR | Zbl
, and ,[35] Attractors for gradient flows of non convex functionals and applications. Arch. Ration. Anal. Mech. 187 (2008) 91-135. | MR | Zbl
, and ,[36] Weak solutions and maximal regularity for abstract evolution inequalities. Adv. Math. Sci. Appl. 6 (1996) 377-418. | MR | Zbl
,[37] Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. (4) 146 (1987) 65-96. | MR | Zbl
,[38] The Brezis-Ekeland principle for doubly nonlinear equations. SIAM J. Contr. Opt. 47 (2008) 1615-1642. | MR | Zbl
,[39] A variational principle for hardening elasto-plasticity. SIAM J. Math. Anal. 40 (2008) 623-652. | MR | Zbl
,[40] The discrete Brezis-Ekeland principle. J. Convex Anal. 16 (2009) 71-87. | MR | Zbl
,[41] Théorème d'interpolation non linéaire et applications. C. R. Acad. Sci. Paris Sér. A-B 270 (1970) A1729-A1731. | MR | Zbl
,[42] Interpolation non linéaire et régularité. J. Funct. Anal. 9 (1972) 469-489. | MR | Zbl
,[43] Interpolation theory, function spaces, differential operators. Second edition, Johann Ambrosius Barth, Heidelberg, Germany (1995). | MR | Zbl
,[44] A new approach to evolution. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 233-238. | MR | Zbl
,[45] An extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl. 18 (2008) 633-650. | MR | Zbl
,- A charge-preserving method for solving graph neural diffusion networks, Communications in Nonlinear Science and Numerical Simulation, Volume 140 (2025), p. 108392 | DOI:10.1016/j.cnsns.2024.108392
- The weighted Inertia-Energy-Dissipation principle, Mathematical Models and Methods in Applied Sciences, Volume 35 (2025) no. 02, p. 223 | DOI:10.1142/s0218202525400019
- Two novel numerical methods for gradient flows: generalizations of the Invariant Energy Quadratization method, Numerical Algorithms (2024) | DOI:10.1007/s11075-024-01847-3
- On the existence and Hölder regularity of solutions to some nonlinear Cauchy–Neumann problems, Journal of Evolution Equations, Volume 23 (2023) no. 3 | DOI:10.1007/s00028-023-00899-7
- Existence of weak solutions to a general class of diffusive shallow medium type equations, Forum Mathematicum, Volume 0 (2022) no. 0 | DOI:10.1515/forum-2021-0320
- Variational resolution of outflow boundary conditions for incompressible Navier–Stokes, Nonlinearity, Volume 35 (2022) no. 11, p. 5553 | DOI:10.1088/1361-6544/ac8fd8
- Stochastic PDEs via convex minimization, Communications in Partial Differential Equations, Volume 46 (2021) no. 1, p. 66 | DOI:10.1080/03605302.2020.1831017
- A minimization procedure to the existence of segregated solutions to parabolic reaction-diffusion systems, Communications in Partial Differential Equations, Volume 46 (2021) no. 12, p. 2268 | DOI:10.1080/03605302.2021.1931884
- Nonlinear viscoelasticity of strain rate type: an overview, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 477 (2021) no. 2245 | DOI:10.1098/rspa.2020.0715
- An Extended Variational Theory for Nonlinear Evolution Equations via Modular Spaces, SIAM Journal on Mathematical Analysis, Volume 53 (2021) no. 4, p. 4865 | DOI:10.1137/20m1385251
- Integral Convexity and Parabolic Systems, SIAM Journal on Mathematical Analysis, Volume 52 (2020) no. 2, p. 1489 | DOI:10.1137/19m1287870
- Weighted Energy-Dissipation principle for gradient flows in metric spaces, Journal de Mathématiques Pures et Appliquées, Volume 127 (2019), p. 1 | DOI:10.1016/j.matpur.2018.06.022
- Dynamic Perfect Plasticity as Convex Minimization, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 2, p. 672 | DOI:10.1137/17m1148864
- Doubly Nonlinear Equations of Porous Medium Type, Archive for Rational Mechanics and Analysis, Volume 229 (2018) no. 2, p. 503 | DOI:10.1007/s00205-018-1221-9
- Weighted Energy-Dissipation approach to doubly nonlinear problems on the half line, Journal of Evolution Equations, Volume 18 (2018) no. 1, p. 49 | DOI:10.1007/s00028-017-0390-6
- A variational approach to Navier–Stokes, Nonlinearity, Volume 31 (2018) no. 12, p. 5664 | DOI:10.1088/1361-6544/aae722
- Parabolic equations and the bounded slope condition, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 34 (2017) no. 2, p. 355 | DOI:10.1016/j.anihpc.2015.12.005
- A variational principle for nonpotential perturbations of gradient flows of nonconvex energies, Journal of Differential Equations, Volume 262 (2017) no. 6, p. 3737 | DOI:10.1016/j.jde.2016.12.002
- A variational approach to symmetry, monotonicity, and comparison for doubly-nonlinear equations, Journal of Mathematical Analysis and Applications, Volume 456 (2017) no. 2, p. 1303 | DOI:10.1016/j.jmaa.2017.07.052
- Variational Approaches and Methods for Dissipative Material Models with Multiple Scales, Analysis and Computation of Microstructure in Finite Plasticity, Volume 78 (2015), p. 125 | DOI:10.1007/978-3-319-18242-1_5
- On gradient structures for Markov chains and the passage to Wasserstein gradient flows, Networks and Heterogeneous Media, Volume 10 (2015) no. 2, p. 233 | DOI:10.3934/nhm.2015.10.233
- Existence of evolutionary variational solutions via the calculus of variations, Journal of Differential Equations, Volume 256 (2014) no. 12, p. 3912 | DOI:10.1016/j.jde.2014.03.005
- Doubly Nonlinear Equations as Convex Minimization, SIAM Journal on Mathematical Analysis, Volume 46 (2014) no. 3, p. 1922 | DOI:10.1137/13091909x
- A New Minimum Principle for Lagrangian Mechanics, Journal of Nonlinear Science, Volume 23 (2013) no. 2, p. 179 | DOI:10.1007/s00332-012-9148-z
- Passing to the limit in a Wasserstein gradient flow: from diffusion to reaction, Calculus of Variations and Partial Differential Equations, Volume 44 (2012) no. 3-4, p. 419 | DOI:10.1007/s00526-011-0440-9
- A variational principle for gradient flows in metric spaces, Comptes Rendus. Mathématique, Volume 349 (2011) no. 23-24, p. 1225 | DOI:10.1016/j.crma.2011.11.002
- A variational view at the time-dependent minimal surface equation, Journal of Evolution Equations, Volume 11 (2011) no. 4, p. 793 | DOI:10.1007/s00028-011-0111-5
- Weighted energy-dissipation functionals for doubly nonlinear evolution, Journal of Functional Analysis, Volume 260 (2011) no. 9, p. 2541 | DOI:10.1016/j.jfa.2010.12.027
- THE DE GIORGI CONJECTURE ON ELLIPTIC REGULARIZATION, Mathematical Models and Methods in Applied Sciences, Volume 21 (2011) no. 06, p. 1377 | DOI:10.1142/s0218202511005350
- A variational principle for doubly nonlinear evolution, Applied Mathematics Letters, Volume 23 (2010) no. 9, p. 1120 | DOI:10.1016/j.aml.2010.04.047
Cité par 30 documents. Sources : Crossref