Cut locus and optimal synthesis in the sub-riemannian problem on the group of motions of a plane
ESAIM: Control, Optimisation and Calculus of Variations, Volume 17 (2011) no. 2, pp. 293-321.

The left-invariant sub-Riemannian problem on the group of motions (rototranslations) of a plane SE(2) is considered. In the previous works [Moiseev and Sachkov, ESAIM: COCV, DOI: 10.1051/cocv/2009004; Sachkov, ESAIM: COCV, DOI: 10.1051/cocv/2009031], extremal trajectories were defined, their local and global optimality were studied. In this paper the global structure of the exponential mapping is described. On this basis an explicit characterization of the cut locus and Maxwell set is obtained. The optimal synthesis is constructed.

DOI: 10.1051/cocv/2010005
Classification: 49J15, 93B29, 93C10, 53C17, 22E30
Keywords: optimal control, sub-riemannian geometry, differential-geometric methods, left-invariant problem, group of motions of a plane, rototranslations, cut locus, optimal synthesis
@article{COCV_2011__17_2_293_0,
     author = {Sachkov, Yuri L.},
     title = {Cut locus and optimal synthesis in the sub-riemannian problem on the group of motions of a plane},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {293--321},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {2},
     year = {2011},
     doi = {10.1051/cocv/2010005},
     mrnumber = {2801321},
     zbl = {1251.49057},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2010005/}
}
TY  - JOUR
AU  - Sachkov, Yuri L.
TI  - Cut locus and optimal synthesis in the sub-riemannian problem on the group of motions of a plane
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2011
SP  - 293
EP  - 321
VL  - 17
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2010005/
DO  - 10.1051/cocv/2010005
LA  - en
ID  - COCV_2011__17_2_293_0
ER  - 
%0 Journal Article
%A Sachkov, Yuri L.
%T Cut locus and optimal synthesis in the sub-riemannian problem on the group of motions of a plane
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2011
%P 293-321
%V 17
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2010005/
%R 10.1051/cocv/2010005
%G en
%F COCV_2011__17_2_293_0
Sachkov, Yuri L. Cut locus and optimal synthesis in the sub-riemannian problem on the group of motions of a plane. ESAIM: Control, Optimisation and Calculus of Variations, Volume 17 (2011) no. 2, pp. 293-321. doi : 10.1051/cocv/2010005. http://archive.numdam.org/articles/10.1051/cocv/2010005/

[1] A.A. Agrachev, Exponential mappings for contact sub-Riemannian structures. J. Dyn. Control Syst. 2 (1996) 321-358. | MR | Zbl

[2] A.A. Agrachev, U. Boscain, J.P. Gauthier and F. Rossi, The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups. J. Funct. Anal. 256 (2009) 2621-2655. | MR | Zbl

[3] U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2), and lens spaces. SIAM J. Control Optim. 47 (2008) 1851-1878. | MR | Zbl

[4] G. Citti and A. Sarti, A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24 (2006) 307-326. | MR | Zbl

[5] El-H.Ch. El-Alaoui, J.-P. Gauthier and I. Kupka, Small sub-Riemannian balls on R3. J. Dyn. Control Syst. 2 (1996) 359-421. | MR | Zbl

[6] J.P. Laumond, Nonholonomic motion planning for mobile robots, Lecture Notes in Control and Information Sciences 229. Springer (1998). | MR

[7] I. Moiseev and Yu. L. Sachkov, Maxwell strata in sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV (2009) DOI: 10.1051/cocv/2009004. | Numdam | MR | Zbl

[8] J. Petitot, The neurogeometry of pinwheels as a sub-Riemannian contact structure. J. Physiol. Paris 97 (2003) 265-309.

[9] J. Petitot, Neurogéometrie de la vision - Modèles mathématiques et physiques des architectures fonctionnelles. Éditions de l'École Polytechnique, France (2008). | MR

[10] Yu.L. Sachkov, Conjugate and cut time in sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV (2009) DOI: 10.1051/cocv/2009031. | Numdam | MR | Zbl

[11] A.M. Vershik and V.Y. Gershkovich, Nonholonomic Dynamical Systems. Geometry of distributions and variational problems, in Itogi Nauki i Tekhniki: Sovremennye Problemy Matematiki, Fundamental'nyje Napravleniya 16, VINITI, Moscow (1987) 5-85 [in Russian]. [English translation in Encyclopedia of Math. Sci. 16, Dynamical Systems 7, Springer Verlag.] | MR | Zbl

[12] E.T. Whittaker and G.N. Watson, A Course of Modern Analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of principal transcendental functions. Cambridge University Press, Cambridge, UK (1996). | MR | Zbl

[13] S. Wolfram, Mathematica: a system for doing mathematics by computer. Addison-Wesley, Reading, USA (1991). | Zbl

Cited by Sources: