Cut locus and optimal synthesis in the sub-riemannian problem on the group of motions of a plane
ESAIM: Control, Optimisation and Calculus of Variations, Volume 17 (2011) no. 2, p. 293-321

The left-invariant sub-Riemannian problem on the group of motions (rototranslations) of a plane SE(2) is considered. In the previous works [Moiseev and Sachkov, ESAIM: COCV, DOI: 10.1051/cocv/2009004; Sachkov, ESAIM: COCV, DOI: 10.1051/cocv/2009031], extremal trajectories were defined, their local and global optimality were studied. In this paper the global structure of the exponential mapping is described. On this basis an explicit characterization of the cut locus and Maxwell set is obtained. The optimal synthesis is constructed.

DOI : https://doi.org/10.1051/cocv/2010005
Classification:  49J15,  93B29,  93C10,  53C17,  22E30
Keywords: optimal control, sub-riemannian geometry, differential-geometric methods, left-invariant problem, group of motions of a plane, rototranslations, cut locus, optimal synthesis
@article{COCV_2011__17_2_293_0,
     author = {Sachkov, Yuri L.},
     title = {Cut locus and optimal synthesis in the sub-riemannian problem on the group of motions of a plane},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {2},
     year = {2011},
     pages = {293-321},
     doi = {10.1051/cocv/2010005},
     zbl = {1251.49057},
     mrnumber = {2801321},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2011__17_2_293_0}
}
Sachkov, Yuri L. Cut locus and optimal synthesis in the sub-riemannian problem on the group of motions of a plane. ESAIM: Control, Optimisation and Calculus of Variations, Volume 17 (2011) no. 2, pp. 293-321. doi : 10.1051/cocv/2010005. http://www.numdam.org/item/COCV_2011__17_2_293_0/

[1] A.A. Agrachev, Exponential mappings for contact sub-Riemannian structures. J. Dyn. Control Syst. 2 (1996) 321-358. | MR 1403262 | Zbl 0941.53022

[2] A.A. Agrachev, U. Boscain, J.P. Gauthier and F. Rossi, The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups. J. Funct. Anal. 256 (2009) 2621-2655. | MR 2502528 | Zbl 1165.58012

[3] U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2), and lens spaces. SIAM J. Control Optim. 47 (2008) 1851-1878. | MR 2421332 | Zbl 1170.53016

[4] G. Citti and A. Sarti, A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24 (2006) 307-326. | MR 2235475 | Zbl 1088.92008

[5] El-H.Ch. El-Alaoui, J.-P. Gauthier and I. Kupka, Small sub-Riemannian balls on R3. J. Dyn. Control Syst. 2 (1996) 359-421. | MR 1403263 | Zbl 0941.53024

[6] J.P. Laumond, Nonholonomic motion planning for mobile robots, Lecture Notes in Control and Information Sciences 229. Springer (1998). | MR 1603373

[7] I. Moiseev and Yu. L. Sachkov, Maxwell strata in sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV (2009) DOI: 10.1051/cocv/2009004. | Numdam | MR 2654199 | Zbl 1217.49037

[8] J. Petitot, The neurogeometry of pinwheels as a sub-Riemannian contact structure. J. Physiol. Paris 97 (2003) 265-309.

[9] J. Petitot, Neurogéometrie de la vision - Modèles mathématiques et physiques des architectures fonctionnelles. Éditions de l'École Polytechnique, France (2008). | MR 3077550 | Zbl pre05954219

[10] Yu.L. Sachkov, Conjugate and cut time in sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV (2009) DOI: 10.1051/cocv/2009031. | Numdam | MR 2744160 | Zbl 1208.49003

[11] A.M. Vershik and V.Y. Gershkovich, Nonholonomic Dynamical Systems. Geometry of distributions and variational problems, in Itogi Nauki i Tekhniki: Sovremennye Problemy Matematiki, Fundamental'nyje Napravleniya 16, VINITI, Moscow (1987) 5-85 [in Russian]. [English translation in Encyclopedia of Math. Sci. 16, Dynamical Systems 7, Springer Verlag.] | MR 922070 | Zbl 0797.58007

[12] E.T. Whittaker and G.N. Watson, A Course of Modern Analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of principal transcendental functions. Cambridge University Press, Cambridge, UK (1996). | MR 1424469 | Zbl 0951.30002

[13] S. Wolfram, Mathematica: a system for doing mathematics by computer. Addison-Wesley, Reading, USA (1991). | Zbl 0671.65002